(3.238.186.43) 您好!臺灣時間:2021/02/26 12:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許進恭
研究生(外文):Jinn-Kong Sheu
論文名稱:以有機金屬氣相磊晶法成長氮化物半導體及藍色發光二極體
論文名稱(外文):III-Nitride Semiconductors and Blue Light-emitting Diodes Grown by Metalorganic Vapor-phase Epitaxy
指導教授:蘇炎坤蘇炎坤引用關係紀國鐘紀國鐘引用關係
指導教授(外文):Yan-Kuin SuGou-Chung Chi
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:270
中文關鍵詞:氮化鎵氮化銦鎵發光二極體有機金屬氣相磊晶
外文關鍵詞:GaNInGaNLEDMOVPE
相關次數:
  • 被引用被引用:1
  • 點閱點閱:222
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要:
在本論文中,我們已經成功地利用有機金屬氣相磊晶法( MOVPE )成長氮化物半導體並製造藍光發光二極體(LED)‧對於製造高性能的藍綠光發光二極體;如何成長出高品質的InxGa1-xN及p-型氮化鎵磊晶薄膜是一重要之課題‧當然;除了磊晶成長外,製程技術也對藍綠光發光二極體之性能具有顯著之影響,此關鍵製程技術包括p-型透明歐姆電極及氮化鎵系列半導體之乾蝕刻技術‧
在磊晶成長方面:對於製造高性能藍綠光發光二極體技術而言,元件級之InxGa1-xN磊晶薄膜及其相關之異質結構,是發展此技術之重點‧在我們的研究過程中發現,InxGa1-xN磊晶薄膜及其相關之異質結構之銦(Indium)含量及磊晶品質明顯受到成長溫度及成長壓力之影響‧在我們的MOVPE成長系統中,當成長溫度及成長壓力分別為780℃及300 torr時,可得到較高品質之InxGa1-xN磊晶薄膜及其相關之異質結構‧在LED製程方面︰我們採用極薄的鎳/金(Ni/Au)金屬層作為p-型透明歐姆電極,此極薄的鎳/金(Ni/Au)金屬層,在氮氣環境中經450℃熱處理過後具有83%之穿透率及1.710-2 -cm2之接觸電阻值‧另外;使用Cl2/Ar及Cl2/N2作為反應氣體之感應式耦合電漿(inductively coupled plasma ,ICP)乾蝕刻技術也被就ICP功率(ICP power)、壓力、反應氣體混合比及射頻功率(RF power)作一系列之研究,對於氮化鎵之蝕刻速率每分鐘可高達8000 A以上‧
根據先前磊晶及製程經驗,我們已經可以製造出商品化之多重量子井藍光發光二極體(MQW blue LED)‧典型的MQW blue LED具有九個週期之In0.3Ga0.7N/GaN量子井,在20 mA的驅動電流下其發光波長及半高寬分別為465 nm及30 nm‧此外;blue LED裸晶粒在20 mA的驅動電流下,具有約3.8 V之順向偏壓
Abstract:
In this dissertation, We have successfully fabricated the InGaN/GaN double heterostructure( DH ) and multiple quantum well( MQW ) blue light-emitting diodes( LEDs ) grown by metalorganic vapor-phase epitaxy( MOVPE ) technique. To fabricate the high performance LEDs emitted in blue-green region, the problems with the growth of InxGa1-xN films must be overcome. Besides the epitaxial layers growth, the processing technologies, including the formation of transparent p-type ohmic contacts and the dry etching of GaN also play an important role in devices performance.
In epitaxial layers growth, a key point in developing III-V nitride technology is the growth of device-grade InxGa1-xN alloys and their heterostructures for visible InGaN-based emitters. In this study, high-quality of InxGa1-xN alloys and their heterostructures has been grown by MOVPE at the temperature and pressure around 780℃ and 300 torr, respectively. In devices process, a light-transmitting Ni/Au Ohmic contacts to p-type GaN, alloyed at 450℃, typically exhibit a transmittance and specific contact resistance of 83% and 1.710-2 -cm2, respectively. InGaN based light emitting diodes with low operation voltage and high efficiency can be successfully fabricated by using this light-transmitting Ni/Au ohmic contacts. Alternatively, inductively coupled plasma etching of GaN was also examined in Cl2/Ar and Cl2/N2 etching gases as functions of ICP power, pressure, mixing ratio and RF power. Maximum etch rates of GaN in Cl2/N2 plasma and Cl2/Ar plasma of 8330 A/min and 8200 A/min have been achieved, respectively. According to previous embodiment, multi-quantum well blue LEDs, which consisting of 9-preiod of In0.3Ga0.7N/GaN MQW have been successfully fabricated with output power better than 1.5 mW(bare chip) at 20 mA and with a forward voltage less than 3.8 V. The peak wavelength and the FWHM of the typical EL spectra at 20 mA are around 465 nm and 30 nm, respectively.
COVER
Contents
Abstract(in Chinese )
Abstract(in English )
Acknowledgment
Tables Captions
Figures Captions
CHAPTER 1. INTRODUCTION
1.1 The Background of Research on Ⅲ-nitrides
1.2 Overview of this Dissertation
1.3 References
CHAPTER 2. METALORGANIC VAPOR PHASE EPITAXY SYSTEM
2.1 Introduction
2.2 MOVPE System
2.3 In Situ Monitoring of GaN Growth
2.4 References
CHAPTER 3. GROWTH AND CHARACTERIZATION OF SI- DOPED AND MG-DOPED GAN EPILAYERS
3.1 Effect of Buffer Layer Growth Temperature on the Properties of GaN
3.2 Growth of Si-doped GaN Epilayers
3.3 Growth of Mg-doped GaN Epilayers
3.4 Photoluminescence Study of Mg-doped GaN Epilayers
3.5 References
CHAPTER 4 GROWTH AND CHARACTERIZATION OF INxGA-xN EPITAXIAL LAYERS AND INxGA-xN/INyGA-yN MULTI-QUANTUM
WELL STRUCTURES
4.1 Introduction
4.2 Growth of lnxGa-xN Epilayers
4.3 Characterization of Si-doped and Si,Zn co-doped InxGa-xN on GaN
4.4 Characterization of Si, Mg co-doped InxGa-xN on GaN
4.5 Growth and Characterization of InxGa-xN/InyGa-yN Multi-Quantum Well Structures
4.6 References
CHAPTER 5. DEVICE PROCESSES
5.1 Study of Ti / Al Ohmic Contacts on Dry-Etched n-GaN Surfaces
5.2 The Effect of Thermal Annealing on the Ni/Au Contact of p-Type GaN
5.3 Transparent Contact to n- and p-GaN
5.3.1 High-Transparency Ni / Au Ohmic Contact to p-Type GaN
5.3.2 Effects of Thermal Annealing on the Indium Tin Oxide Schottky Contacts of n-GaN
5.3.3 The Indium Tin Oxide Ohmic Contacts to Highly doped n-GaN
5.4 Inductively Coupled Plasma Etching of GaN Using Cl/ArNGases
5.5 References
CHAPTER 6. GROWTH AND CHARACTERIZATION OF INxGA-xN/GAN LIGHT EMITTING DIODES
6.1 Introduction
6.2 InxGa-xN/GaN DH Blue LEDs Light-Emitting Diodes.
6.3 InxGa-xN/GaN Multi-Quantum Well Light-Emitting Diodes
6.4 White Light LEDs
6.5 References
CHAPTER 7. CONCLUSIONS
Publication List
Publication List
Vita
References in Chapter 1
1. R. juza and H. Hahn, Anorg. Allegem. Chem., Vol.234, 282(1940).
2. H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett., Vol.15, 367(1969).
3. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, “ Effects of AlN buffer layer on crystallographic structure zand on electrical and optical propertical properties of GaN and Ga1-xAlxN films grown on sapphire substrate by MOVPE”, J. Cryst. Growth., Vol.98, 209(1989).
4. S. Nakamura, “ GaN growth using GaN buffer layer”, Jpn. J. Appl. Phys., Vol.30, L1705 (1991 ).
5. T. W. Weeks, Jr., M. D. Bremser, K. S. Ailey, E. Carlson and co-workers, “Undoped and doped GaN thin films deposited on high-temperature monocrystalline AIN buffer layers on vicinal and on-axis alpha(6H)-SiC(0001) substrates via organometallic vapor phase epitaxy “, Appl. Phys. Lett., Vol.67, 401(1995).
6. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “ A new emission band related to EL2 in GaAs”, Jpn. J. Appl. Phys., Vol.28, L2112(1989).
7. S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “ Thermal annealing effects on p-type Mg-doped GaN films”, Jpn. J. Appl. Phys., Vol.31, L139 (1992 ).
8. S. Nakamura, N. Iwasa, Senoh, and T. Mukai,M,” Hole compensation mechanism of p-type GaN films”, Jpn. J. Appl. Phys., Vol.31, 1258 (1992 ).
9. A. Koukitu, N. Tkahashi, T. T. Taki and H. Seki,” Investigation of buffer layer of cubic GaN epitaxial films on (100) GaAS grown by metalorganic-hydrogen chloride vapor-phase epitaxy “, Jpn. J. Appl. Phys., Vol.35, L673 (1996 ).
10. M. Shimizu, K. Hiramatsu and N. Sawaki,” Metalorganic vapor-phase epitaxy growth of (inxga1-xn/gan)(n) layered structures and reduction of indium droplets “, J. Cryst. Growth., Vol.145, 209( 1994).
11. E. L. Piner, M. K. Behbehani, N. A. Ei-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros and S. M. Bedair,” Effect of hydrogen on the indium incorporation in InGaN epitaxial films “, Appl. Phys. Lett., Vol.70, 461(1997).
12. T. L. Chu, J. Electrochem. Soc. Vol.119, 1200(1971).
13. I. Adesida, A. Mahajan, E. Andideh, M. A. Khan, D. T. Olsen and J. N. Kuznia, “Reactive ion etching of gallium nitride in silicon tetrachloride plasmas “, Appl. Phys. Lett., Vol.63, 2777(1993).
14. M. E. Lin, Z. F. Zan, Z. Ma. L. H. Allen and H. Morkoc, “Reactive ion etching of GaN using BCl3”, Appl. Phys. Lett., Vol.64, 887(1994).
15. A. T. Ping, I. Adesida, M. A. Khan, and J. N. Kuznia, “Reactive ion etching of gallium nitride using hydrogen bromide plasmas “, Electron. Lett., Vol.30, 1895(1994).
16. R. J. Shul, S. P. Kilcoyne, M. Hagerott Crawford, J. E. Parmeter, C. B. Vartuli, C. R. Abernathy, and S. J. Pearton,” High temperature Electron cyclotron resonance plasma etching of GaN,InN and AlN”, Appl. Phys. Lett., Vol.66, 1761 ( 1995 ).
17. S. J. Pearton, U. K. Chakrabarti, A. P. Kinsella, D. Johnson and C. Constantine, “Electron cyclotron resonance plasma etching of InP in CH4/H2/Ar”, Appl. Phys. Lett., Vol.56, 1424 ( 1990 ).
18. R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, jr., and M. Schurman, “Inductively coupled plasma etching of GaN “, Appl. Phys. Lett., Vol.69, 1119 ( 1996 ).
19. M. E. Lin, Z. Ma, Y. F. Huang, Z. F. Fan, L. H. Allen, and H. Morkoc, “Low-resistance ohmic contacts on wide band-gap GaN”, Appl. Phys. Lett., Vol.64, 1003 (1994).
20. Z. F Fan, S. N. Mmohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H.Morkoc, “Very low resistance multilayer ohmic contact to n-GaN “, Appl. Phys. Lett., Vol.68, 1672 (1996).
21. J. D .Guo, C. I. Lin, M. S. Feng, F. M. Pan, G. C. Chi, and C. T. Lee., “A bilayer Ti/Ag ohmic contact for highly doped n-type GaN films “, Appl. Phys. Lett., Vol.68, 235 (1996).
22. T. Kim, M. C. Yoo, and T. Kim,” Cr/Ni/Au Ohmic contacts to the moderately doped p- and n-GaN”, Mat. Res. Soc. Symp. Proc., Vol. 449, 1061 (1997).
23. T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S.Nagai, S. Yamasaki, S. Asami, N. Shibata, and M. Koike.,” Schottky barriers and contact resistances on p-type GaN”, Appl. Phys. Lett., Vol.69, 3537 (1996).
24. J. T. Trexler, S. J. Pearton, P. H. Holloway, M. G. Mier, K. R. EVANS AND R. F. Karlicek, “ Comparison of Ni/Au, Pd/Au and Cr/Au metallizations for Ohmic contacts to p-GaN” , Mater. Res. Soc. Symp. Proc., Vol.449, 1091(1997).
25. S. Nakamura, T. Mokia and M. Senoh, “ Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett., Vol.64,1687(1994).
26. J. I. Pankove, “ Electrolytic etching of GaN”, J. Electrochem. Soc., Vol.119,1118(1972).
27. I. Akasaki, H. Amano, H. Murakami, H. Kato, M. Sassa, and K. Manabe, “Growth of GaN and AlGaN for uv blue p-n-junction diodes “, J. Cryst. Growth., Vol.128, 379( 1993).
28. M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm, and W. Schaff, “ Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 ℃”, Appl. Phys. Lett., Vol.66,1083(1995).
29. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T.Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes “, Jpn. J. Appl. Phys., Vol.35, L74(1996).
30. C. P. Kuo, R. M. Fletcher, T.D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins,” High performance AlGaInP visible ligh-emitting diodes”, Appl. Phys. Lett., Vol.57, 2937(1990).
31. J. S. Jang, I. S. Chang, H. K. Kim, T. Y. Seong, S. Lee and S. J. Park, “Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN “, Appl. Phys. Lett., Vol.74, 70(1999).
32. J. R. Mileham, S. J. Pearton, R. C. Abernathy, J. D. Mackenzie, R. J. Shul and S. P. Kilcoine, “Patterning of AlN, InN, and GaN in KOH-based solutions “, J. Vac. Sci. Tecnol, A14, 836(1996).
33. J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park and T. Kim,”Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment”, Appl. Phys. Lett., Vol.73, 2953(1998).
34. Bernard Gil, “ Group III Nitride Semiconductor Compounds ”, P.33(Clarendon Press, Oxford,1998).
35. J. I. Pankove and Theodore D. Moustakas, “ Gallium Nitride(GaN) I “, P.104(Academic Press,1998).
References in Chapter 2
1. M. Kazumura, I. Ohta, and I. Teramoto, “ Feasibility of the LPE growth of AlxGayIn1-x-Yp on GaAs substrate”, Jpn.J. Appl. Phys., Vol. 22, 654(1983).
2. H. M. Manasevit, “ Single-crystal gallium arsenide on insulating substrate”, Appl. Phys. Lett., Vol. 12, 156(1968).
3. H. M. Manasevit, F. Erdmann and W. Simpson, J. Electrochem. Soc., Vol. 118, 1864(1971).
4. S. P. DenBaar, B. Y. Maa, P. D. Dapkus and H. C. Lee, “ Homogeneous and heterogeneous theral decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD”, J. Cryst. Growth. Vol. 77, 188(1986).
5. T. Makimoto, Y. Yamauchi, N. Kobayashi, and Y. Horikoshi, “ In situ optical monitoring of the GaAs growth process in MOCVD ”, Jpn. J. Appl. Phys. Vol.29, L207 (1990).
6. S. L. Wright, T. N. Jackson, and R. F. Marks, “ Apparent temperature oscillation during molecular beam epitaxy: A useful interferometric effect”, J. Vac. Sci. & Technol. Vol.B8, 288(1990).
7. A. J. Spring Thorpe and A. Majeed, “ Epitaxial growth rate measurements during molecular beam epitaxy “, J. Vac. Sci. & Technol. Vol.B8, 266(1990).
8. T. Okamoto and A. Yoshikawa, “ Effects of substrate materials and their properties on photoassisted metalorganic vapor phase epitaxy of ZnSe”, Jpn. J. Appl. Phys. Vol.30, L156(1991).
9. S. Nakamura, “ In situ monitoring of GaN growth using interference effects”, Jpn. J. Appl. Phys. Vol.30, 1620(1991).
10. I. P. Herman, “Optical Diagnostics for Thin Film Processing”, (Academic, San Diego, 1996).
References in Chapter 3
1. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama,” High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum-well structures”, Jpn. J. Appl. Phys., Vol.34, L797(1995).
2. S. Nakamura, T. Mokia and M. Senoh, “Candela-class high-brightness InGaN /AlGaN double-heterostructure blue-light-emitting diodes “, Appl. Phys. Lett., Vol.64, 1689(1994).
3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyodo, “Characteristics of InGaN multi-quantum-well-structure laser diodes “, Appl. Phys. Lett., Vol.68, 3269(1996).
4. M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm, and W. Schaff, “Temperature activated conductance in GaN / AlGaN heterostructure field-effect transistors operating at temperatures up to 300℃”, Appl. Phys. Lett., Vol. 66, 1083(1995).
5. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “The dependence of the electrical characteristics of the GaN epitaxial layer on the thermal treatment of the GaN buffer layer “, Appl. Phys. Lett., Vol.48, 353(1986).
6. S. Nakamura, “ GaN growth using GaN buffer layer”, Jpn. J. Appl. Phys., Vol.30, L1705(1991).
7. C. F. Lin, G. C. Chi, M. S. Feng, J. D. Gou, J. S. Tsang, and J. Ming huang Hong,” The dependence of the electrical characteristics of the GaN epitaxial layer on the thermal treatment of the GaN buffer layer “, Appl. Phys. Lett., Vol.68, 3758(1996).
8. K. Doverspike, L. B. Rowland, D. K. Gaskill, and J. A. Freitas, JR., “The effect of GaN and AlN buffer layers on GaN film properties grown on both c-plane and a-plane sapphire “, J. Electron. Mat., Vol.24, 269(1995).
9. S.D.Hersee, J.Ramer, K.Zheng, C.F.Kranenberg, K.Malloy, M.Banas, and M.Goorsky, “The role of the low-temperature buffer layer and layer thickness in the optimization of OMVPE growth of GaN on sapphire “, J. Electron. Mat., Vol.24, 1519(1995).
10. A. Estes Wickenden, D. K. Wickenden and T. J. Kistenmacher, “ The effect of thermal annealing on GaN nucleation layer deposited on (0001) sapphire by metalorganic chemical vapro deposition”, J. Appl. Phys., Vol.75, 5367(1994).
11. M. Richards-Babb, S. L. Buczkowski, Zhonghai Yu, and T. H. Myers, “ An atomic force microscopy study of the initial nucleation of GaN on sapphire”, Mat. Res. Soc. Symp Pro, Vol.395, 237(1996).
12. Barrett and Massalkski, “Structure of Metals”, PP.155-157(McGraw-Hill, New York, 1980).
13. J. C. Ramer, K. Zheng, C. F. Kranenberg, M. Banas and S. D. Hersee, “ A study of the effect of growth rate and annealing on GaN buffer layers on sapphire”, Mat. Res. Soc. Symp. Proc., Vol.395, 225(1996).
14. W. C. Cheng, C. S. Chang and S. H. Chan, “ Structure of high resistivity GaAs grown by low-temperature metalorganic chemical vapro deposition”, Appl.Phys.Lett., Vol.69, 3239(1996).
15. W. Qian, M. Skowronski, M. DeGraef, K. Doverspike, L. B. Rowland, and D. K. Gaskill, “ Microstructural characterization of alpha-gan films grown on sapphire by organometallic vapor-phase epitaxy “, Appl. Phys. Lett., Vol.66, 1252(1995).
16. S. D. Lester, F. A. Ponce, M. G. Grafford, and D. A. Steigerwald, “ High dislocation densities in high-efficiency GaN -based light-emitting-diodes “, Appl. Phys. Lett., Vol.66, 1249(1995).
17. B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, U. K. Mishra, S. P. DenBaars and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films “, Appl. Phys. Lett., Vol.68, 643(1996).
18. D. Kapolnek, X. H. Wu, B. Heying, S. Keller, U. K. Mishra, S. P. Denbaars, and J. S. Speck, “Structural evolution in epitaxial metalorganic chemical-vapor-deposition grown GaN films on sapphire “ , Appl. Phys. Lett., Vol.67, 1541(1996).
19. W. Qian, M. Skowronski, M. Degraef, K. Doverspike, L. B. Rowland, and D. K. Gaskill, “Microstructural characterization of alpha-gan films grown on sapphire by organometallic vapor-phase epitaxy “, Appl. Phys. Lett., Vol.66, 1252(1995).
20. N. Koide, H. Kato, M. Sassa, S. Yamasaki, K. Manabe, and I. Akasaki, “ Si and Ge-doped GaN films grown with GaN buffer layers”, J. Cryst. Growth., Vol.115, 639( 1991).
21. S. Nakamura, T. Mukai and M. Senoh, “ Si- and Ge-doped GaN films grown with GaN buffer layers”, Jpn. J. Appl. Phys., Vol.31, 2883 (1992).
22. D. K. Wickenden and W. A. Bryden, Silicon Carbide and Related Materials, ed. M. G. Spencer, R. P. Devaty, J. A. Edmond, M. A. Khan and M. Rahman, p. 381( Bristol: Institute of Physics, 1994 ).
23. A. M. Beers and J. Bloem, Appl. Phys. Lett., Vol.41, 613 (1992).
24. J. P. Duchemin, M. Bonnet and F. Koelsch, J. Electrochem. Soc., Vol.125, 237 ( 1978 ).
25. S. D. Hersee, J. P. Duchemin, Annu. Rev. Mater. Sci., Vol.12, 65 ( 1982).
26. S. J. Bass, “ Silicon and germanium doping of epitaxial GaAs grown by the trimethylgallium-arsine method”, J. Cryst. Growth., Vol.47, 613(1978).
27. T. F. Kuech, B. S. Meyerson and E. Veuhoff, “ Disilane: A new doping source in metalorganic chemical vapro deposition of GaAs “, Appl. Phys. Lett., Vol.44, 986(1984).
28. H. Murakami, T. Asahi, H. Amano, K. Hiramatsu, N. Sawaki, and I. Akasaki. “ Growth of Si-doped AlGaN on ( 0001) sapphire substrate by metalorganic vapor phase epitaxy ”, J. Cryst. Growth., Vol.115, 648( 1991).
29. M. Shimazu, K. Kamon, K. Kimura, M. Mashida, M. Mihara, and M. Ishii, J. Cryst. Growth., Vol.83, 327 (1987).
30. H. Hotta, I. Hino, and T. Suzuki, J. Cryst. Growth, Vol.93, 618 (1988).
31. M. Druminsky, H. D. Wolf, and K. H. Zschauer, “ Unexpectedly high energy photoluminescence of highly Si-doped GaAs grown by MOVPE”, J. Cryst. Growth., Vol.57, 318 (1982).
32. W. Gotz, N. M. Johnson, C. Chen, H. L iu, C. Kuo and W. Imler, “Activation energies of Si donors in GaN “, Appl. Phys. Lett., Vol.68, 3144(1996).
33. N. F. Mott and T. D. Twose, Adv. Phys., Vol.10, 107 ( 1961).
34. R. J. Molnar, T. Lei, and T. D. Moustakas,” Electron transport mechanism in gallium nitride”, Appl. Phys. Lett., Vol.62, 72(1993).
35. W. Gotz, N. M. Johnson, J. Walker, D. P. Bour and R. A. Street, ”Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett., Vol.68, 667(1996).
36. T. Ogino, M. Aoki, Jpn. “ Mechanism of yellow luminescence in GaN”, J. Appl. Phys., Vol.19, 2395 (1980).
37. J. Neugebauer, C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN “, Appl. Phys. Lett., Vol.69, 503(1996).
38. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “ A new emission band related to EL2 in GaAs”, Jpn. J. Appl. Phys., Vol.28, L2112(1989).
39. S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “ Thermal annealing effects on p-type Mg-doped GaN films”, Jpn. J. Appl. Phys., 31, L139 (1992 ).
40. S. Nakamura, N. Iwasa, Senoh, and T. Mukai,M, “ Hole compensation mechanism of p-type GaN films”, Jpn. J. Appl. Phys., 31, 1258 (1992 ).
41. J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Hung, J. M. Hong, Y. C. Yu, C. W. Wang and E. K. Lin,” The effect of thermal annealing on the Ni/Au contact of p-type GaN”, J. Appl. Phys., Vol. 83, 3172 (1998).
42. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki,,” Growth and luminescence properties fo Mg-doped GaN prepared by MOVPE”, J. Electrochem. Soc. Vol.137, 1639(1990)
43. H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. Vol. 15, 367(1969).
44. S. Strite and H. Morkoc, “ GaN, AlN, and InN: A review,” J. Vac. Technol, vol. B10, 1237 (1992).
45. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, T.Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku., “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime “, Appl. Phys. Lett Vol.70, 868 (1997).
46. M. Rubin, N. Newman, J. S. Chan, T. C. Fu, and J. R . Ross, “P-type gallium nitride grown by reactive ion-beam molecular-beam epitaxy with ion-implantation, diffusion, or coevaporation of Mg “, Appl. Phys. Lett., 64, 64 ( 1994 ).
47. W. Gotz, N. M. Johnson, J. Walker, D. P. Bour, H. Amano, and I. Akasaki, “Hydrogen passivation of Mg acceptors in GaN grown by metalorganic chemical-vapor-deposition “, Appl. Phys. Lett., 67, 2666 ( 1995 ).
48. J. A. van Vechten, J. D. Zook, R. D. Hornig, and B. Goldenberg, “ Defeating compensation in wide gap semiconductors by growing in H that is removed by low temperatures de-ionizing radiation “, Jpn. J. Appl. Phys., 31, 3662 (1992).
49. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “ A new emission band related to EL2 in GaAs”,Jpn. J. Appl. Phys., 28, L2112 ( 1989 ).
50. S. Nakamura, M. Senoh and N. Iwasa, “ Thermal annealing effects on p-type Mg-doped GaN films”, Jpn. J. Appl. Phys., 31, L139 (1992).
51. M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, A. Salvador, B. N. Sverdlov, A.Botchkarev, H. Morkoc, and B. Goldenberg, “Mechanisms of band-edge emission in Mg-doped p-type GaN “, Appl. Phys. Lett., 68, 1883(1996).
52. J. M. Myoung, K. H. Shim, C. Kim, K. Kim, S. Kim, and S. G. Bishop, “Optical characteristics of p-type GaN films grown by plasma-assisted molecular beam epitaxy “, Appl. Phys. Lett., 69, 2722(1996).
53. S. Strite and H. Morkoc, “ GaN, AlN and InN: A review ”, J. Vac. Sci-Technol. B10, 1237 ( 1992 ).
54. C. H. Hong, D. Pavidis, and S. W. Brown, “Photoluminescence investigation of GaN films grown by metalorganic chemical-vapor-deposition on (100)gaas “, J. Appl. Phys., 74, 1705 ( 1995 ).
55. R. Dingle and M. Ilegems, “ Donor-acceptor pair recombination in GaN”, Solid State Commun., Vol. 9, 175( 1971 ).
56. S. Nakamura, N. Iwasa, M. Senoh and T. Mukai, “ Hole compensation mechanism of p-type GaN films”, Jpn. J. Appl. Phys., part 1. 31, 1258 (1992).
57. J. A. van Vechten, J. D. Zook, R. D. Hornig, and B. Goldenberg, “ Defeating compensation in wide gap semiconductors by growing in H that is removed by low temperatures de-ionizing radiation “, Jpn. J. Appl. Phys., 31, 3662 (1992).
58. J. I. Pankove, “Optical Processes in Semiconductors”, ( Prentice-Hall, New JERSEY, 1971 ) PP. 147-152.
59. B. I. Shklovskii and A. L. Eforos, “ Electronic Properties of Doped Semiconductors”, ( Springer, Berlin, 1984), P.52.
60. H. C. Casey,Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, “Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light-emitting diodes “, Appl. Phys. Lett., 68, 2867(1996).
61. J. Neugebauer and C. G. Van de Walle, “Atomic geometry and electronic-structure of native defects in GaN “, Phys. Rev. B 50, 8067 (1994).
62. P. Boguslawski, E. L. Briggs. And J. Bernholc, “Native defects in gallium nitride “, Phys. Rev. B 52, 17255 (1995).
63. W. Gotz, N. M. Johnson, H. Amano and I.Akasaki, “Deep-level defects in n-type GaN “, Appl. Phys. Lett., 65, 463(1994).
64. H. Morkoc et al., First International Conference on GaN and Related Compounds. MRS Fall Meeting, Boston, November 1995.
References in Chapter 4
1. A. Koukitu, N. Tkahashi, T. T. Taki and H. Seki, “ Hermodynamic analysis of InxGa1-xN alloy composition grown by metalorganic vapor phase epitaxy ”, Jpn. J. Appl. Phys., Vol. 35, L673 (1996 ).
2. T. Matsuoka, H. Tanaka, T. Sasaki, and A. Katsui, (1989). International Symposium on GaAs and related Compounds, Inst.Phys. Conf. Vol. 106, p.141.
3. M. Shimizu, K. Hiramatsu and N. Sawaki, “ Metalorganic vapor-phase epitaxy growth of (inxga1-xn/gan)(n) layered structures and reduction of indium droplets “, J. Cryst. Growth., Vol. 145, 209( 1994).
4. E. L. Piner, M. K. Behbehani, N. A. Ei-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros and S. M. Bedair, “Effect of hydrogen on the indium incorporation in InGaN epitaxial films “, Appl. Phys. Lett., Vol. 70, 461(1997).
5. N. A. EI-Masry, E. L. Piner S. X. Liu and S. M. Bedair, “ Phase separation in InGaN grown by metalorganic chemical vapor deposition ”, Appl. Phys. Lett., Vol. 72, 40 (1998)
6. K. Osamura, S. Naka and Y. Marukami, “ Preparation and optical properties of Ga1-xInxN thin films”, J. Appl.Phys., Vol. 46, 3432((1975).
7. Y. Horikoshi, H. Yamaguchi, F. Briones, and M. Kawashima, J. Cryst. Growth., Vol. 105, 326(1990).
8. H. Seki and A. Koukitu, J. Cryst. Growth, Vol. 98, 118(1989).
9. A. Koukitu, N. Takahashi, T. Taki and H. Seki, “ Thermodynamic analysis of InxGa1-xN alloy composition grown by metalorganic vapor phase epitaxy “, Jpn. J. Appl. Phys., Vol. 6, L673(1996)
10. S. M. Bedair, F. G. Mcintosh, J. C. Roberts, E. L. Piner, K. S. Boutros, and N. A. EI-Masry, “ Growth and characterization of In-based nitride compounds “, J. Cryst. Growth, Vol. 178, 32(1997).
11. S. Keller, B. P. Keller, D. Kaponlnek, A. C. Abare, H. Masiri, L. A. Golden, U. K. Mishra and S. P. Denbaars,” Growth and characterization of bulk InGaN films and quantum wells ”, Appl. Phys. Lett., Vol. 68, 3147 (1996).
12. K. S. Boutros, F. G. McIntosh, J. C. Roberts, S. M. Bedair, E. L. Piner, and N. A. Ei-Masry,” High-quality InGaN films grown by atomic layer epitaxy”, Appl. Phys. Lett., Vol. 67, 1856 (1995).
13. J. I. Pankove and J. A. Hutchby, J. Appl. Phys. Vol. 42, 281(1974).
14. G. Jacob, M. Boulou and M. Furtado, “ Effect of growth parameters on the properties of GaN:Zn epilayers”, J. Cryst. Growth. Vol. 42, 136(1977).
15. J. I. Pankove and J. A. Hutchby, “ photoluminescence of ion-implanted GaN” , J. Appl. Phys. Vol. 47, 5387(1976).
16. S. Nakamura, T. Mokia and M. Senoh, “Candela-class high-brightness ingan/algan double-heterostructure blue-light-emitting diodes “, Appl. Phys. Lett. Vol. 64, 1687 (1994).
17. S. Nakamura and G. Fasol, “ The blue laser diode ”, pp. 181(1997).
18. S. Chichibu, T. Azuhata, T. Sota and S. Nakamura, “ Luminescence from localized states in InGaN epilayers ” , Appl. Phys. Lett. Vol. 70, 2822(1997).
19. S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, S. I. Nagahama and T. Yamada,” Superbright green InGaN single-quantum-well light-emitting diodes ”, Jpn. J. Appl. Phys., Vol. 34, L1332(1995).
20. S. Yamasaki, S. Aasami, N. Shibata, M. Koike, K. Manabe, T. Tanaka, H. Amano and I. Akasaki, “ P-type conduction in Mg-doped Ga0.91In0.09 grown by MOVPE ”, Appl. Phys. Lett. Vol. 66, 1112(1995).
21. S. Nakamura, M. Senoh and N. Iwasa, “ Thermal annealing effects on p-type Mg-doped GaN films”, Jpn. J. Appl. Phys., 31, L139 (1992).
22. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyodo, “ InGaN multi-quantum-well structure laser diodes grown on MgAl2O4 substrates “, Appl. Phys. Lett. Vol. 68, 2105 (1996).
23. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyodo, “Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime “, Appl. Phys. Lett. Vol. 70, 868 (1997).
References in Chapter 5
1. M. E. Lin, Z. Ma, Y. F. Huang, Z. F. Fan, L. H. Allen, and H. Morkoc, “Low-resistance ohmic contacts on wide band-gapGaN “, Appl. Phys. Lett. Vol.64, 1003 (1994).
2. Z. F Fan, S. N. Mmohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H.Morkoc, “ Very low resistance multilayer ohmic contact to n-GaN”, Appl. Phys. Lett. Vol.68, 1672 (1996).
3. A. T.Ping, M. A. Khan and I. Adesida, “Ohmic contacts to n-type GaN using Pd/Al metallization “, J. Electron. Mater. Vol.25, 819(1996).
4. B. P. Luther, S. E. Moheny, T. N. Jackson, M. A. Khan, Q. Chen and J. W. Yang, “ Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN “, Appl. Phys. Lett. Vol.70, 57 (1997).
5. B. P. Luther, J. M. DeLucca, S. E. Moheny, and R. F. Karlicek, jr., “Analysis of a thin AlN interfacial layer in Ti/Al and Pd/Al ohmic contacts to n-type GaN “, Appl. Phys. Lett. Vol.71, 3859 (1997).
6. C. T. Lee, M. Y. Yeh and Y. T. Lyu, “Low resistance bilayer Nd/Al ohmic contacts on n-type GaN “, J. Electron. Mater. Vol.26, 262(1997).
7. M. E. Lin, Z. F. Fan, Z. Ma, L. H. Allen, and H. Morkoc, “Reactive ion etching of gan using BCl3”, Appl. Phys. Lett. Vol.64, 887 ( 1994 ).
8. R. J. Shul, S. P. Kilcoyne, M. Hagerott Crawford, J. E. Parmeter, C. B. Vartuli, C. R. Abernathy, and S. J. Pearton, “ High-temperature electron-cyclotron-resonance etching of GaN, InN and AlN “, Appl. Phys. Lett. Vol.66, 1761 ( 1995 ).
9. R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, Jr., C. Tarn, and M. Schurman,” Inductively coupled plasma etching of GaN ”, Appl. Phys. Lett. Vol.69, 1119 ( 1996 ).
10. C. B. Vartuli, J. D. Mackenzie, J. W. Lee, C. R. Abernathy, S. J. Pearton, and R. J. Shul, “Cl2/Ar and CH4/H2/Ar dry etching of III-V nitrides “, J. Appl. Phys. Vol.80, 3705 ( 1996 ).
11. R. J. Shul, G. B. McClellan, S. J. Pearton, C. R. Abernathy, C. Constantine, and C. Barratt, “Comparison of dry etch techniques for GaN “, Electron Lett. Vol.32, 1408 ( 1996 ).
12. S. A. Smith, C. A. Wolden, M. D. Bbremser, A. D. Hanser, R. F. Davis, and W. V. Lampert, “High rate and selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma “, Appl. Phys. Lett. Vol.71, 3631 ( 1997 ).
13. L. Wang, M. I. Nathan, T. H. Lim, M. A. Khan and Q. Chen, “High barrier height GaN Schottky diodes: Pt/GaN and Pd/GaN “, Appl. Phys. Lett. Vol.68, 1267 ( 1996 ).
14. L. L. Smith, R. F. Davis, M. J. Kim, R. W. Carpenter, and Y. Huang, “Microstructure, electrical properties, and thermal stability of Al ohmic contacts to n-GaN “, J. Mater. Res. Vol.11, 2257 (1996).
15. J. D. Guo, C. I. Lin, M. S. Feng, F. M. Pan, G. C. Pan, G. C. Chi and C. T. Lee, “A bilayer Ti/Ag ohmic contact for highly doped n-type GaN films “, Appl. Phys. Lett. Vol.68, 235 (1996).
16. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum-well structures “, Jpn. J. Appl. Phys. Vol.34, L797 (1995).
17. S. Nakamura, T. Mokia and M. Senoh, “Candela-class high-brightness InGaN /AlGaN double-heterostructure blue-light-emitting diodes “, Appl. Phys. Lett. Vol.64, 1689 (1994).
18. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyodo, “ Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime “, Appl. Phys. Lett. Vol.70, 868 (1996).
19. M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm, and W. Schaff, “ High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors”, Appl. Phys. Lett. Vol.66, 1083 (1995).
20. O. Aktas, Z. F. Fan, S. N. Mmohammad, A. E. Botchkarev, and H. Morkoc, “Schottky barriers and contact resistances on p-type GaN “, Appl. Phys. Lett. Vol.69, 3872 (1996).
21. T. Kim, M. C. Yoo, and T. Kim, “ Cr/Ni/Au ohmic contacts to the moderately doped p- and n-GaN”, Mat. Res. Soc. Symp. Proc. Vol.449, 1061 (1997).
22. T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S.Nagai, S. Yamasaki, S. Asami, N. Shibata, and M. Koike, “Schottky barriers and contact resistances on p-type GaN “,Appl. Phys. Lett. Vol.69, 3537 (1996).
23. W. K. Chu, J. W. Mayer and M. A. Nicolet, Backscattering Spectrometry, New York: Academic Press( 1978 ).
24. J. F. Lin, M. C. Wu, M. J. Jou, C. M. Chang, B. J. Lee and Y. T. Tsai, “Highly reliable operation of indium tin oxide AlGaInP orange light-emitting-diodes “, Electron. Lett., 30, 1793 (1994).
25. M. Hagerott, H. Jeon, A. V. Nurmikko, W. Xie, D. C. Grillo, M. Kobayashi and R. L. Gunshor, “ Indium tin oxide tranparent electrode material for ZnSe-based blue quantum-well light emitters”, Appl. Phys. Lett. Vol.60, 2825 (1992).
26. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou and C. M. Chang, “Effects of thermal annealing on the indium tin oxide Schottky contacts of n-GaN “, Appl. Phys. Lett. 72, 3317 ( 1998).
27. J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Hung, J. M. Hong, Y. C. Yu, C. W. Wang and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN “, J. Appl. Phys. Vol.83, 3172 (1998).
28. J. S. Foresi and T. D. Moustakas, “Metal contacts to gallium nitride “, Appl. Phys. Lett. 63, 1859(1993)
29. G. Marlow and M. B. Das, “ The effects of contact size and non-zero metal resistance on the determination of specific contact resistance”, Solid-State Electron. Vol. 25, 91 (1982).
30. M. A. Khan, A. R. Bhattarai, J. N. Kkuznia, and D. T. Olson, “Schottky-barrier photodetector based on Mg-doped p-type GaN films “, Appl. Phys. Lett. Vol.63, 1214(1993).
31. M. A. Khan, J. N. Kkuznia, D. T. Olson, and M. Blasingame, “Schottky-barrier photodetector based on Mg-doped p-type GaN films “, Appl. Phys. Lett. Vol.63, 2455(1993).
32. J. Pankove, S. S. Chang, H. C. Lee, R. J. Molnar, T. D. Moustakas, and B. Van Zeghbroeck, IEDM, Vol.94, 389(1994).
33. A. T. Ping, A. C. Schmitz, M. A. Khan, and I. Adeaida, “Characterization of Pd Schottky barrier on n-type GaN “, Electron. Lett. Vol.32, 68(1996).
34. S. C. Binari, H. B. Dietrich, G. Kelner, L. B. Lowland, K. Doverspike and D. K. Gaskill, “Electrical characterization of Ti schottky barriers on n-type GaN “, Electron. Lett. Vol.32, 909(1994).
35. J. D. Guo, F. M. Pan, M. S. Feng, R. J. Guo, and C. Y. Chang, “ Study of Schottky barriers on n-type GaN grown by low-pressure metalorganic chemical deposition”, Appl. Phys. Lett. Vol.67, 2657(1996).
36. J. D. Guo, F. M. Pan, M. S. Feng, R. J. Guo, P. F. Chuo and C. Y. Chang, “Schottky contact and the thermal stability of Ni on n-type GaN “, J. Appl. Phys. Vol.80, 1623(1996).
37. W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, and A.Y. Cho, “In0.53Ga0.47As metal-semiconductor-metal photodiodes with transparent cadium tin oxide schottky contacts”, Appl. Phys. Lett. Vol. Vol.65, 1930(1994).
38. J. W. Seo, C. Caneau, and I. Adesida, “Application of indium-tin-oxide with improved transmittance at 1.3m for MSM photodetectors “, IEEE. Photonics. Lett. Vol.5, 1313(1993).
39. P.Hacke, T. Detchprohm, K. Hiramatsu, and N. Sawaki, “Schottky-barrier on n-type GaN grown by hydride vapor-phase epitaxy “, Appl. Phys. Lett. Vol.63, 2676(1993).
40. S. K. Cheung and N. W. Cheung, “ Extraction of Schottky diodes parameters from forward current-voltage characteristics”, Appl. Phys. Lett. Vol.49, 85(1986).
41. H. Norde, “ A modified forward I-V plot for Schottky diodes with high series resistance”, J. Appl. Phys. Vol.50, 5052(1979)
42. M. Libra and L. Bardos, Vacuum. Vol.38, 455( 1988).
43. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang and C. C. Liu, “ High transparency Ni/Au ohmic contacts to p-type GaN”, Appl. Phys. Lett. Vol. 74 (1999).
44. R. F. Davis, Proc. IEEE Vol.79, 702 ( 1991 ).
45. R. J. Shul, A. J. Howard, S. J. Pearton, C. R. Abernathy and C. B. Vartuli, “High-density etching of group III nitride ternary films “, J. Electrochem. Soc. Vol.143, 3285 ( 1996 ).
46. S. J. Pearton, F. Ren, T. R. Fullowan, J. R. Lothian, A. katz, R. F. Kopf and C. R. Abernathy, Plasma sources Sci. Technol., Vol.1, 18 ( 1992 ).
47. G. A. Hebner, C. B. Fleddermann and P. A. Miller, “Metastable chlorine ion kinetics in inductively coupled plasmas “, J. Vac. Sci. Tecnol. Vol.A15, 2698( 1997 ).
References in Chapter 6
1. S. Nakamura, T. Mokai and M. Senoh,” High-power GaN p-n junction blue-emitting diodes”, Jpn. J. Appl. Phys. Vol.30, 1998(1991).
2. S. Nakamura, M. Senoh, S. Magahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiooku, and Y. Sugimoto,” InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets”, Jpn. J. Appl. Phys. Vol.35, L217(1996).
3. S. Nakamura, M. Senoh and T. Mokai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes “,Jpn. J. Appl. Phys. Vol.32, L8(1993)
4. S. Nakamura, T. Mokia and M. Senoh, “ High-brightness InGaN/AlGaN double-heterostructure blue-green light-emitting diodes”, J. Appl. Phys. Vol.76, 8189 (1994).
5. S. D. Lester, F. A. Ponce, M. G. Craford and D. A. Steigerwald, “ High dislocation densities in high efficiency GaN-based light-emitting diodes”, Appl. Phys. Lett. Vol.66, 1249 (1995).
6. S. Nakamura, T. Mokia and M. Senoh, “Candela-class high-brightness InGaN /AlGaN double-heterostructure blue-light-emitting diodes “, Appl. Phys. Lett. Vol.64, 1687 (1994).
7. H. C. Casey, Jr. And D. J. Silversmith, “ Radiative tunneling in GaAs abrupt asymmetrical junctions”, J. Appl. Phys. Vol.40, 241(1969).
8. H. C. Casey, Jr. And R. Z. Bachrach, J. Appl. Phys. Vol.40, 241(1973).
9. T. N. Morgan, Phys. Rev. A 139, 343( 1965).
10. B. I. Halperin and M. Lax, Phys. Rev. A 148, 722( 1966).
11. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita and S. Nakamura, ”Role of sefl-formed InGaNquantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett., Vol. 70, 981(1997)
12. J. I. Pankove, Optical Processes in Semiconductors ( Prentice-Hall, New JERSEY, 1971 ), PP. 147-152.
13. P. Perlin, M. Osinski, P. G. Eliseev, V. A. Smagely, J. Mu, M. Banas and P. Sartori, “Low-temperature study of current and electroluminescence in InGaN/AlGaN/GaN double-heterostructure blue light-emitting diodes “, Appl. Phys. Lett. Vol. 69, 1680(1996).
14. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood and C. A. Burrus, Phys. Rev. Vol. 53, 2173(1984).
15. T. J. de Lyon, J. M. Woodall, D. T. McInturff, R. J. S. Bates, J. A. Kash, P. D. Kirchner and F. Cardone, “ Doping concentration dependence of radiance and optical modulation bandwidth in carbon doped InGaP/GaAs light-emitting diodes grown by gas-source molecular beam epitaxy,” Appl. Phys. Lett. Vol. 60, 353(1992).
16. D. K. Maude, O. Kuhn, J. C. portal, M. Henini, L. Eaves, G. Hill and M. A. Pate, “ Electroluminescence and magnetotransport studies of a p-i-n superlattice double-barrier resonant tunneling structure,” Semiconduct. Sci. Technol. Vol. 9, 540(1994).
17. H. B. Evans, L. Eaves and M. Henini, “ Quantum-well luminescence at acceptors in p-i-n resonant tunneling diodes,” Semiconduct. Sci. Technol. Vol. 9, 555(1994).
18. K. Bando, Y. Noguchi, K. S akano and Y. Shimizu, Tech. Digest, Phosphor Res. Soc., 264th Meeting, November 29(1996).
19. S. Nakamura, “InGaN-based blue laser diodes “, IEEE J. Sel. Top. Quantum Electron. Vol. 3, 435(1997).
20. L. H. Peng, C. W. Chuang and L. H. Lou, ”Piezoelectric effects in the optical properties of strained InGaN quantum wells”, Appl. Phys. Lett., Vol.74, 795(1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔