(44.192.112.123) 您好!臺灣時間:2021/03/06 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃昕彥
研究生(外文):Shin-Yen Huang
論文名稱:上流式厭氣污泥床處理抑制性基質之動力行為
論文名稱(外文):Kinetic Behavior of UASB Reactors Treating Inhibitory Substrate
指導教授:黃汝賢黃汝賢引用關係
指導教授(外文):Ju-Sheng Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:158
中文關鍵詞:上流式厭氣污泥床酚抑制性基質表面流速污泥顆粒特性多重穩定狀態動力模式效益因子模式驗證
外文關鍵詞:UASB reactorinhibitory substrate phenolsuperficial velocitygranule characteristicsmultiple steady stateskinetic modeleffectiveness factormodel verification
相關次數:
  • 被引用被引用:1
  • 點閱點閱:191
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
上流式厭氣污泥床處理抑制性基質之動力行為
摘 要
本研究除了推導涵蓋有甲烷菌分率及污泥顆粒特性參數之上流式厭氣污泥床 (UASB) 反應器動力模式外,另以四組UASB反應器 (表面流速us = 0.5、1.0、2.0及4.0 m/h) 處理抑制性基質 (酚) 廢水,俟每一組反應器達穩定狀態時,分別自反應器內取出不同斷面處之污泥顆粒,量測其粒徑分佈以及使用批次反應器測定甲烷菌分率,亦藉實驗證實UASB反應器處理抑制性基質時,確實會存在著多重穩定狀態,最後再藉四組UASB反應器實際操作所得之十六組實驗數據驗證動力模式。
四組UASB反應器處理酚基質廢水時,在體積負荷1.06 ~ 10.66 kg COD/m3-d (試程1 ~ 試程3;試程A3除外) 且進流端之酚濃度為5.0 ~ 201.3 mg/L之操作下,四組UASB反應器之COD去除率 (96.6% ~ 98.1%) 皆大致相同。惟試程4在體積負荷提高至10.65 ~ 14.42 kg COD/m3-d且進流端之酚濃度已高達544 ~ 713 mg/L之操作下,四組UASB反應器之COD去除率驟降為66.8% ~ 73.2%。
在穩定操作狀態下,每一組UASB反應器之污泥顆粒平均等似直徑 (dp, avg) 隨us之增加而增大;dp, avg亦隨體積負荷、食微比之提高而增大;UASB反應器上、中、下層之污泥顆粒分佈情形,似由低體積負荷之下層有較大污泥顆粒等似直徑 (dpi) 逐漸轉變為高體積負荷且高表面流速操作下之中層有較大dpi之趨勢。此外,從UASB反應器取出污泥顆粒混合液,並經由懸浮生長血清瓶反應器 (35  1 C) 培養測得之甲烷菌分率 (f) 為0.19 ~ 0.84,且高體積負荷之f值有比低體積負荷者小之趨勢;下層污泥顆粒之f值則大致較上層者為大。此外,經由追蹤劑 (Li+) 試驗之測定及延散係數之計算結果發現,四組UASB反應器皆為趨近於CSTR之流況。
經由懸浮生長批次反應器 (35  1 C;打碎污泥顆粒) 之厭氣培養測定後,再經Levenberg-Marquardt algorithm非線性迴歸求得酚厭氣酸化之Haldane型動力常數k1、Ks1及Ki值分別為1.28 mg phenol/mg VSS-d、63.6 mg phenol/L及56.7 mg phenol/L;另經Halwachs方法之線性迴歸求得強化培養乙酸甲烷化之Monod型動力常數k2及Ks2值分別為5.25 mg acetate/mg VSS-d及144 mg acetate/L。
經由涵蓋有甲烷菌分率及污泥顆粒特性參數之UASB反應器動力模式模擬之酚及COD去除率與實驗測定值之誤差分別約在  5%及  10%範圍內,證實本研究推導之UASB反應器動力模式之適用性。此外,以污泥顆粒粒徑分佈函數計算之酚及COD去除率模擬值與面積分率平均粒徑計算者比較,兩種計算方式之模擬值幾乎相同。換言之,吾人可用步驟較簡單之後者模擬UASB反應器液相之酚及COD濃度。
經由模式模擬結果亦發現,降解酚基質之效益因子為液相酚濃度之飽和函數;污泥顆粒粒徑愈大 (效益因子將減小) 時,愈適合處理高濃度抑制性基質;甲烷菌分率增加時,傳輸至污泥顆粒之乙酸質通量增加,而酚質通量則減少。
最後,值得一提者有二:(1) UASB反應器處理酚基質廢水時,確實會發生多重穩定狀態;及 (2) 四組UASB反應器進流端之酚濃度高達544 ~ 713 mg/L (抑制濃度之可能範圍) 時,即會發生COD去除率驟降之現象。
關鍵詞:上流式厭氣污泥床、酚抑制性基質、表面流速、污泥顆粒特性、多重穩定狀態、流況、動力模式、酚厭氣酸化、乙酸甲烷化、甲烷菌分率、效益因子、模式驗證。
Kinetic Behavior of UASB Reactors Treating Inhibitory Substrate
ABSTRACT
A kinetic model of upflow anaerobic sludge bed (UASB) reactors, which involves a distributed fraction of methanogens (f) and characteristic parameters of sludge granules, is proposed. Also, four identical UASB reactors (superficial velocity us = 0.5, 1.0, 2.0, and 4.0 m/h) were used to treat synthetic wastewater containing the inhibitory substrate phenol. Once each of the four UASB reactors reached steady state, sludge granules removed from the UASB reactor were used to measure granule sizes and to determine f values (by independent experiments). The existence of multiple steady states in UASB reactors treating the inhibitory substrate phenol was also verified by experiments. Finally, the proposed kinetic model of UASB reactors was verified by sixteen sets of experimental data.
At the volumetric loadings ranging from 1.06 to 10.66 kg COD/m3-d (phenol inlet concentrations of 5.0 — 201.3 mg/L), the COD removal efficiencies (96.6% — 98.1%) of the four UASB reactors (except for Run A3) treating the inhibitory substrate phenol do not vary significantly. However, at the volumetric loadings of as high as 10.65 — 14.42 kg COD/m3-d (Run 4), the COD removal efficiencies of the four UASB reactors decline abruptly to 66.8% — 73.2% while the phenol inlet concentrations increase rapidly to 544 — 713 mg/L.
In each of the four steady-state UASB reactors, the average equivalent diameter of granules (dp, avg) increases with an increase in us, volumetric loading, or F/M ratio. Larger granule sizes (equivalent diameter of granules, dpi) appear to shift from the lower-part of UASB reactors at lower volumetric loadings to the middle-part of UASB reactors at higher volumetric loadings together with higher us. With the use of sludge granules taken from each of the four UASB reactors, the f values determined by independent batch experiments are 0.19 — 0.84. A higher volumetric loading tends to give a smaller f value, and the f value in the lower-part of sludge bed is larger than that in the upper-part of sludge bed. In addition, from tracer tests and calculated results of dispersion number, the flow regimes of the four UASB reactors with superficial velocities of 0.5, 1.0, 2.0, and 4.0 m/h are close to complete-mix.
By using suspended-growth batch reactors (35  1 C; disrupted granules), the Haldane-type intrinsic biokinetic constants k1, Ks1, and Ki (of phenol acidogenesis) determined by Levenverg-Marquardt algorithm (nonlinear regression) are 1.28 mg phenol/mg VSS-d, 63.6 mg phenol/L, and 56.7 mg acetate/L, respectively. The Monod-typw intrinsic biokinetic constants k2 and Ks2 (of acetate methanogenesis with enriched culture) determined by the Halwachs method (linear regression) are 5.25 mg acetate/L and 144 mg acetate/L, respectively.
By using the kinetic model involving the f and characteristic parameters of sludge granules, the calculated phenol and COD removal efficienties are only  5% and  10% deviated from the experimental data. This implies that the proposed kinetic model can be used to predict the treatment performance of the UASB reactor treating the inhibitory substrate phenol. In addition, the calculated phenol and COD removal efficiencies based on granule size distribution are nearly the same as those based on uniform granule size. Accordingly, to simulate phenol and COD concentrations in bulk liquid, one would rather choose the calculation method based on uniform granule size.
From the simulated results, the effectiveness factor () for phenol degradation is a saturated function of phenol bulk concentration. A larger granule size ( declines) favors the treatment of the inhibitory substrate phenol. With an increase in f, acetate flux transporting to sludge granules increases while phenol flux decreases.
Finally, two other findings are briefly described as follows: (1) Multiple steady states do occur in the UASB reactor treating the inhibitory substrate phenol; and (2) Once the phenol inlet concentrations increase up to 544 — 713 mg/L (a possible range of inhibiting concentrations), the COD removal efficiencies of the four UASB reactors decline abruptly.
目 錄
授 權 書………………………………………………………………………1
中文摘要……………………………………………………………………….I
英文摘要……………………………………………………………………….III
目 錄……………………………………………………………………….VI
表 目 錄……………………………………………………………………….X
圖 目 錄………………………………………………………………………XII
符號說明………………………………………………………………………XV
第一章緒 論……………………………………………………………….1
1-1 研究動機……………………………………………………………….1
1-2 研究目的……………………………………………………………….2
第二章文獻回顧……………………………………………………………….4
2-1UASB反應器概說……………………………………………………..4
2-1-1UASB反應器之特性…………………………………………………..4
2-1-2UASB反應器之設計準則…………………..……………………..…6
2-1-3UASB反應器之發展與應用……..………………………………..…..8
2-2 厭氣代謝反應機制…………………………………………………...13
2-3酚/酚類化合物之厭氣代謝路徑..……………………………………18
2-4 生物動力……………………………………………………………...25
2-4-1Michaelis-Menten Kinetics……………………………………………25
2-4-2Monod Kinetics…………………………………………………….…27
2-4-3Lawrence and McCarty Kinetics……………………………………..28
2-4-4Haldane Kinetics………………………………………………………30
2-5 UASB反應器之污泥顆粒特性………………………………………33
2-5-1 顆粒化之機制………………………………………………………33
2-5-2 顆粒之結構及組成…………………………………………………...36
2-5-3 顆粒粒徑之分析……………………………………………………..37
2-6 UASB反應器之流況…………………………………………………39
2-7 產酸菌和甲烷菌分率………………………………………………..39
2-8 觸媒顆粒對反應動力之影響………………………………………..40
2-8-1 顆粒孔隙度…………………………………………………………...40
2-8-2 顆粒粒徑對反應動力之影響………………………………………40
2-9 影響厭氣生物程序穩定性之因素…………………………………..42
2-10 生物反應器處理抑制性基質之多重穩定狀態……………………...46
第三章UASB反應器動力模式………………………………………………51
3-1 動力模式之推導……………………………………………………...51
3-2 數值分析…………………………………………………………….57
第四章 實驗設備與方法……………………………………………………...60
4-1 實驗設備……………………………………………………………...60
4-1-1 UASB反應器…………………………………………………………60
4-1-2 批次反應器…………………………………………………………...60
4-1-3 血清瓶反應器………………………………………………………..62
4-1-4 儀器設備……………………………………………………………...62
4-2 實驗方法…………………………………………………………….…63
4-2-1 合成廢水……………………………………………………………...63
4-2-2 UASB反應器之植種、馴化及起動…………………………………63
4-2-3 UASB反應器試程之操作……………………………………………65
4-2-4 UASB反應器之追蹤劑試驗…………………………………………67
4-2-5 強化培養乙酸甲烷化及之酚厭氣酸化動力常數之測定……..…….67
4-2-6 甲烷菌分率…………………………………………………………...68
4-2-7 無氧水之配製………………………………………………………...69
4-3實驗分析方法………………………………………………………...70
4-3-1 生物動力常數之迴歸分析…………………………………………...70
4-3-2 UASB反應器之流況分析……………………………………………72
4-3-3 水質與生物產氣分析………………………………………………...74
4-3-4 生物特性分析………………………………………………………...75
第五章 結果與討論…………………………………………………………...86
5-1 強化培養乙酸甲烷化及酚厭氣酸化之動力常數…………………86
5-2 UASB反應器處理酚基質合成廢水…………………………………89
5-2-1 有機物去除率vs.體積負荷、食微比………………………………..89
5-2-2 甲烷菌分率…………………………………………………………..94
5-2-3 酚抑制濃度…………………………………………………………97
5-2-4 抑制性基質之多重穩定狀態……………………………………….100
5-3 UASB反應器之流況………………………………………………..102
5-4 UASB反應器之污泥顆粒特性……………………………………..107
5-4-1 污泥顆粒特性vs.表面流速…………………………………………107
5-4-2 污泥顆粒粒徑vs.體積負荷………………………………………..116
5-4-3 污泥顆粒粒徑vs.食微比…………………………………………..116
5-4-4 污泥顆粒粒徑分佈………………………………………………….119
5-4-5 單位污泥顆粒VSS質量之COD量…………………………………122
5-4-6 生物顆粒菌相觀察………………………………………………….123
5-5 UASB反應器動力模式之模擬及實驗驗證…..……………………126
5-5-1 液相酚及COD濃度對模式之驗證…………………………………127
5-5-2 液相酚濃度對效益因子之影響…………………………………….132
5-5-3 污泥顆粒粒徑對效益因子之影響…………………………………133
5-5-4 甲烷菌分率對酚及乙酸質通量之影響…………………………….133
第六章結 論…………………………………………………………….135
參考文獻……………………………………………………………………...137
附 錄…………………………………………………………………….152
誌 謝……………………………………………………………………156
自 述……………………………………………………………………...158
參考文獻
張祖恩、曾婉綢。1985。厭氧污泥床法操作特性之研究。第十屆廢水處理技術研討會論文集,263 ~ 273頁。
張祖恩、吳崇彥。1986。反應槽深度對厭氧污泥床法之影響。第十一屆廢水處理技術研討會論文集,339 ~ 352頁。
紀長國。1993。厭氣生物濾床之動力模式。國立成功大學環境工程研究所博士論文。
林明瑞、盧重新、郭建男。1995。二相式厭氧生物旋轉反應槽處理含酚廢水。第二十屆廢水處理技術研討會論文集,3-69  3-76 頁。
曾四恭、周士弼。1995。柱塞流式反應槽增進厭氧消化氯酚之研究。第二十屆廢水處理技術研討會論文集,3-31  3-38頁。
顏己喨。1996。傳統與倒錐厭氣流體化床兩段式動力及特性。國立成功大學環境工程學系碩士論文。
林信道。1998。上流式厭氣污泥床污泥顆粒特性及動力模式。國立成功大學環境工程學系碩士論文。
Agrawal, L. K., Harada, H., Okui, H. 1997a. Treatment of dilute wastewater in a UASB reactor at moderate temperature : Performance aspects. J. Ferment. Bioengng. 83: 179-184.
Allsop, P. J., Chisti, Y., Moo-Young, M., Sullivan, G. R. 1993. Dynamics of phenol degradation by Pseudomonas putida. Biotechnol. Bioengng. 41:572-580.
Alphenaar, P. A., Perez, M. C., van Berkel, W. J. M., Lettinga, G. 1992. Determination of permeability and porosity of anaerobic sludge granules by size exclusion chromatography. Appl. Microbiol. Biotechnol. 36: 795-799.
Alphenaar, P. A., Perez, M. C., Lettinga, G. 1993a. The influence of substrate transport limitation on porosity and methanogenic activity of anaerobic sludge granules. Appl. Microbiol. Biotechnol. 39: 276-280.
Alphenaar, P. A., Visser, A., Lettinga, G. 1993b. The effect of liquid upflow velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a hight sulphate content. Biores. Technol. 43: 249-258.
Andrews, J. F. 1968. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioengng. 5: 707-723.
Andrews, J. F. 1969. Dynamic model of the anaerobic degestion process. J. Sanitary Engineering Dirision (ASCE). 95: 95-116.
Annachhatre, A. P., Khanna, P. 1987. Methane recovery from water hyacinth through whole-cell immobilization technology. Biotechnol. Bioengng. 29: 805-818.
Annachhatre, A. P., Khanna, P. 1990. Fixed-film biomethanation modeling. J. Environ. Engng. (ASCE) 116: 49-69.
APHA, AWWA, WPCF. 1992. Standard methods for the examination of water and wastewater. 18th edition, APHA, Washington, DC.
Aris, R. 1957. On shape factors for irregular particles: I. The steady state problem, diffusion and reaction. Chem. Eng. Sci. 6: 262-268.
Bailey, J. E., Ollis, D. F. 1986. Biochemical engineering fundamentals. 2nd edition. McGraw-Hill, New York.
Balba, M. T., Evans, W. C. 1980. The methanogenic biodegradation of catechol by a microbial consortium: Evidence for the production of phenol through cisbenzendiol. Biochem. Soc. Transac. 8: 452-460.
Beltrame, P., Beltrame, P. L., Carniti, P., Pitea, D. 1980. Kinetics of phenol degradation by activated sludge in a continuous-stirred reactor. J. Water Pollut. Control Fed. 52: 126-133.
Berrueta, J., Castrillon, L. 1992. Anaerobic treatment of leachates in UASB reactors. J. Chem. Tech. Biotechnol. 54: 33-37.
Bhatia, D., Vieth, W. R., Venkatasubramanian, K. 1985. Steady state and transient behavior in microbial methanification: I. Experimental results. Biotechnol. Bioengng. 27: 1192-1198.
Boone, D. R., Worakit, S., Mathrani, I. M., Mathrani, R. A. 1986. Alkaliphlic methanogens from high-pH lake sediments. J. Systematic Applied Microbiology. 7: 230-234.
Borighem, G., Vereecken, J. 1981. Model of a chemostat utilizing phenol as inhibitory substrate. Ecol. Model. 12: 231-243.
Bruns, D. D., Bailey, J. E., Luss, D. 1973. Steady state multiplicity and stability of enzymatic reaction systems. Biotechnol. Bioengng. 15: 1131-1145.
Bryant, M. P., Wolin, E. A., Wolin, M. J., Wolfe, R. S. 1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Microbiol. 59: 20-31.
Cail, R. G., Barford, J. P. 1985. The development of granulation in an upflow floc digester and upflow anaerobic sludge blanket digester treating cane juice stillage. Biotech. Lett. 7: 493-498.
Campos, C. M. M., Anderson, G. K. 1992. The effect of the liquid upflow velocity and substrate concentration on the start-up and steady-state periods of lab-scale UASB reactors. Wat. Sci. Tech. 25: 41-50.
Carberry, J. J. 1976. Chemical and catalytic reaction engineering. McGraw-Hill, New York. 129-134.
Cheng, S. S., Ho, C. Y., Wu, J. H. 1997. Pilot study of UASB process treating PTA manufacturing wastewater. Wat. Sci. Tech. 36: 73-82.
Chi, C. T., Howell, J. A., Pawlowsky, U. 1974. The regions of multiple stable steady states of a biological reactor with wall growth, utilizing inhibitory substrates. Chem. Engng. Sci. 29: 207-211.
Chi, C. T., Howell, J. A. 1976. Transient behavior of continuous stirred tank biological reactors utilizing phenol as an inhibitory substrate. Biotechnol. Bioengng. 18: 63-80.
Chmielowski, J. 1965. Biochemical degradation of some phenols during the methane fermentation. Zeszyty Naulowe Politechniki Slaskiej, Inzynieria Sanitarna Seria. 8: 97-122.
Chmielowski, J., Wasilewski, W. 1966. An Investigation of the dynamics of anaerobic decomposition of some phenols in the methane fermentation. Zeszyty Naukowe Politechniki Slaskiej, Inzynieria Sanitarna Seria. 9: 95-122.
DAdamo, P. D., Rozich A. F., 1984. Gaudy, A. F. Analysis of growth data with inhibitory carbon sources. Biotechnol. Bioengng. 26: 397-402.
Denac, M., Dunn, I. J. 1988. Packed- and fluidized-bed biofilm reactor performance for anaerobic wastewater treatment. Biotechnol. Bioengng. 32: 159-173.
Denac, M., Miguel, A., Dunn, I. J. 1988. Modeling dynamic experiments on anaerobic degradation of molasses. Biotechnol. Bioengng. 31: 1-10.
Devera, A. L., Varma, A. 1979. Substrate-inhibited enzyme reaction in a tubular reactor with axial dispersion. Chem. Engng. Sci. 34: 275-278.
Dirasian, H. A., Molof, A. H., Borchardt, J. A. 1963. Electrode potential in digestion. J. Water Pollut. Control Fed. 35: 424-437.
Dolfing, J. 1985. Kinetics of methane formation by granular sludge at low substrate concentrations: the influence of mass transfer limitation. Appl. Microbio. Biotechnol. 22: 77-81.
Donlon, B., Razo-Flores, E., Luijten, M., Swarts, H., Lettinga, G., Field, J. 1997. Detoxification and partial mineralization of the azo dye mordant orange 1 in a continuous upflow anaerobic sludge blanket reactor. Appl. Microbiol. Biotechnol. 47: 83-90.
Dudley, B. T., Howgrave-Graham, A. R., Bruton, A. G., Wallis, F. M. 1993. Image analysis to quantify and measure UASB digester granules. Biotechnol. Bioengng. 42: 279-283.
Dwyer, D. F., Krumme, M. L., Boyd, S. A., Tiedje, J. M. 1986. Kinetics of phenol biodegradation by an immobilized Methanogenic consortium. Appl. Environ. Microbio. 52:345-351.
Edwards, T., McBride, B. C. 1975. New method for the isolation and identification of methanogenic bacteria. Appl. Microbiol. Biotechnol. 29: 504-545.
Ehrhardt, H. M., Rehm, H. J. 1985. Phenol degradation by microorganisms adsorbed on activated carbon. Appl. Microbiol. Biotechnol. 21:32-36.
Evans, W. C. 1977. Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature. 270: 17-22.
Fang, H. H. P., Chan, O. C. 1997. Toxicity of phenol towards anaerobic biogranules. Wat. Res. 31: 2229-2242.
Fang, H. H. P., Chen, T., Li, Y. Y., Chui, H. K. 1996. Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor. Wat. Res. 30: 1353-1360.
Fang, H. H. P., Chui, H. K., Li, Y. Y. 1994. Microbial structure and activity of UASB granules treating different wastewaters. Wat. Sci. Tech. 30: 87-96.
Fang, H. H. P., Chui, H. K., Li, Y., Y. 1995. Effect of degradation kinetics on the micro-structure of anaerobic biogranules. Wat. Sci. Tech. 32:165-172.
Fang, H. H. P., Chui, H. K., Li, Y. Y. 1995a. Microstructural analysis of UASB granules treating brewery wastewater. Wat. Sci. Tech. 31: 129-135.
Fang, H. H. P., Li, Y. Y., Chui, H. K. 1995b. UASB treatment of wastewater with concentrated mixed VFAs. J. Environ. Eng. (ASCE) 121: 153-160.
Fang, H. H. P., Li, Y. Y., Chui, H. K. 1995c. Performance and sludge characteristics of UASB process treating propionate-rich wastewater. Wat. Res. 29: 895-898.
Fang, H. H. P., Wu, W. Y. 1995. Effect of metals in electroplating effluent on the activity of benzoate-degrading biogranules. Proceeding of 20th Wastewater Treatment Technology Conference, 9-14.
Fiebig, R., Dellweg, H. 1985. Comparison between the process performance of an UASB reactor and an UASB-fixed film-combination with an acetic acid enrichment culture. Biotechnol. Lett. 7: 487-492.
Fukuzaki, S., Chang, Y., Nishio, N., Nagai, S. 1991. Characteristics of granular methanogenic sludge grown on lactate in a UASB reactor. J. Ferment. Bioengng. 72: 465-472.
Gantzer, G. J. 1989. Inhibitory substrate utilization by steady-state biofilms. J. Envir. Engng. (ASCE) 115: 302-319.
Gaudy, A. F., Lowe, W., Rozich, A. F., Colvin, R. 1988. Practical methodology for predicting critical operation range of biological systems treating inhibitory substrates. J. Water Pollut. Control Fed. 60: 77-85.
Godrej, A. N., Sherrard, J. H. 1988. Kinetics and stoichiometry of activated sludge treatment of a toxic organic wastewater. J. Water Pollut. Control Fed. 60: 221-226.
Grady, C. P. L. 1990. Biodegradation of toxic organics: Status and potential. J. Envir. Engng. (ASCE) 116: 805-828.
Graham , P. W. 1969. Kinetics aspects of the treatment of phenolic wastes. Advances in Water Pollution Research, 4 th International Conference, Prague. Oxford, Pergamon Press. 447-462.
Grbic-Galic, D., Young, L. Y. 1985. Methane fermentation of ferulate and benzoate: anaerobic degradation pathways. Appl. Environ. Microbio. 50: 292-297.
Grotenhuis, J. T. C., Plugge, C. M., Stams, A. J. M., Zehnder, A. J. B. 1991a. Role of substrate concentration in particle size distribution of methanogenic granular in UASB reactors. Wat. Res. 25: 21-27.
Grotenhuis, J. T. C., Smit, M., Plugge, M., Yuansheng, X., van Lammeren, A. A. M., Stams, A. J. M., Zehnder, A. J. B. 1991b. Bacteriological composition and structure of granular sludge adapted to different substrate. Appl. Environ. Microbiol. 57: 1942-1949.
Guiot, S. R., Arcand, Y., Charie, C. 1992a. Advantage of fluidization on granule size and activity development in upflow anaerobic sludge bed reactors. Wat. Sci. Tech. 26: 897-906.
Guiot, S. R., Pauss, A., Costerton, J. W. 1992b. A structured model of the anaerobic granule consortium. Wat. Sci. Tech. 25: 1-10.
Halwachs, W. 1978. Km and Vmax from only one experiment. Biotechnol. Bioengng. 20: 281-285.
Han, K. H., Levenspiel, O. 1988. Extended Monod kinetics for substrate. Biotechnol. Bioengng. 32: 430-437.
Hayes, T. D., Theis, T. L. 1978. The distribution of heavy metals in anaerobic digestion. J. Water Pollut. Control Fed. 50: 61-72.
Heertjes, P. M., van der Meer, R. R. 1978. Dynamics of liquid flow in an upflow reactor used for anaerobic treatment of wastewater. Biotechnol. Bioengng. 20: 1577-1594.
Heertjes, P. M., Kuijvenhoven, L. J. 1982. Fluid flow pattern in upflow reactors for anaerobic treatment of beet sugar factory wastewater. Biotechnol. Bioengng. 24: 443-459.
Henze, M., Harremoes, P. 1983. Anaerobic treatment of wastewater in fixed film reactors. Wat. Sci. Tech. 15: 1-10.
Hill, G. A., Robinson, C. W. 1975. Substrate inhibition kinetics: Phenol degradation by Pseudomonas putida. Biotechnol. Bioengng. 17: 1599-1605.
Hines, A. L., Maddox, R. N. 1985. Mass transfer fundamentals and applications. Prentice-Hall, New Jersey.
Howell, J. A., Jones, M. G. 1981. The development of two-component operon-type theory for phenol degradation. Biotechnol. Bioengng. 77: 122-128.
Hsu., E. H. 1986. Treatment of a petrochemical wastewater in sequencing batch reactors. Environ. Prog. 5: 71-81.
Huang, J. S., Jih, C. G. 1997. Deep-biofilm kinetics of substrate utilization in anaerobic filters. Wat. Res. 31: 2309-2317.
Huang, J. C., Ray, B. T., Huang, Y. J. 1989. Sludge digestion by anaerobic fludized beds. I. Lab performance data. J. Environ. Engng. (ASCE) 115: 1139-1155.
Hulshoff Pol, L. W., de Zeeuw, W. J., Velzeboer, C. T. M. 1983. Granulation in UASB reactors. Wat. Sci. Tech. 15: 291-304.
Jih, C. G., Huang, J. S. 1994. Effect of biofilm thickness distribution on substrate-inhibited kinetics. Wat. Res. 28: 967-973.
Jih, C. G., Huang, J. S., Huang, J. C. 1992. Verification of deep-biofilm kinetics with axial dispersion in anaerobic filter. pp. (6-10)-(6-18). Int. symp. on energy, environment and information management, Argonne National Laboratory, Illinois.
Jones, G. L., Hansen, F., McKay, A. J. 1973. Substrate inhibition of the growth of bacterium NCIB 8350 by phenol. J. Gen. Microbiol. 73: 139-148.
Kennes, C., Mendez, R., Lema, J. M. 1997. Methanogenic degradation of p-cresol in batch and in continuous UASB reactors. Wat. Res. 7: 1549-1554.
Kettunen, R. H., Rintala, J. A. 1998. Performance of on-site UASB reactor treating leachate at low temperature. Wat. Res. 32: 537-546.
Kim, I. S., Tabak, H. H., Young, J. C. 1997. Modeling of the fate and effect of chlorinated phenols in anaerobic treatment processes. Wat. Sci. Tech. 36: 287-294.
Kettunen, R. H., Rintala, J. A. 1997. The effect of low temperature ( 5-29 C ) and adaptation on the methanogenic activity of biomass. Appl. Microbiol. Biotechnol. 48: 570-576.
Knoll, G., Winter, J. 1989. Degradation of phenol via carboxylation to benzoate by a defined, obligate syntrophic consortium of anaerobic bacteria. Appl. Microbiol. Biotechnol. 30: 318-324.
Kosaric, N., Blaszczyk, R., Orphan, L. 1990a. Factors influencing formation and maintenance of granules in anaerobic sludge blanket reactors (UASBR). Wat. Sci. Tech. 9: 275-282.
Kosaric, N., Blaszczyk, R., Orphan, L., Valladares, J. 1990b. The characteristics of granules from upflow anaerobic sludge blanket reactors. Wat. Res. 12: 1473-1477.
Kugelman, I. J., Chin, K. K. 1971. Toxicity, synergism and antagonism in anaerobic waste treatment process. American Chim. Society. 105: 55-90.
Kugelman, I. J., McCarty, P. L. 1965. Cation toxicity and stimulation in anaerobic waste treatment. J. Water Pollut. Control Fed. 37: 97-104.
Kumaran, P., Paruchuri, Y. L. 1997. Kinetics of phenol biotransformation. Wat. Sci. Tech. 31: 11-22.
Lawrence, A. W., McCarty, P. L. 1969. Kinetics of methane fermentation in anaerobic treatment. J. Water Pollut. Control Fed. 41: R1-R17.
Lawrence, A. W., McCarty, P. L. 1970. A unified basis for biological treatment desigh and operation. J. Sanitary Engng. Div. (ASCE) 96: 757-779.
Lee, H. H. 1985. Heterogeneous reactor design. Butter worth Publishing Co., New York. 263-266.
Lepisto, R., Rintala, J. A. 1997. Start-up and operation of laboratory-scale thermophilic upflow anaerobic sludge blanket reactors treating vegetable processing wastewater. J. Chem. Tech. Biotechnol. 68: 331-339.
Lettinga, G., Hobma, S. W., Hulshoff Pol, L. W., de Zeeuw, W., de Jong, P., Grin, P., Roersma, R. 1984. Design operation and economy of anaerobic treatment. Wat. Sci. Tech. 15: 177-195.
Lettinga, G., Hulshoff Pol, L. W. 1986. Advanced reactor design, operation and economy. Wat. Sci. Tech. 18: 99-108.
Lettinga, G., Hulshoff Pol, L. W. 1991. UASB-process design for various types of wastewaters. Wat. Sci. Tech. 24: 87-107.
Lettinga, G., van Velsen, A. F. M. Hobma, S. W., de Zeeuw, W., Klapwijk, A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioengng. 22: 699-734.
Levenspiel, O. 1972. Chemical reaction engineering. 2nd edition, John Wiley, New York.
Lewandowski, G., Salerno, S. M., Mullen, N., Gneidning, L., Adamowitz, D. 1986. Biodegradation of toxic chemicals using commercial preparations. Environ. Prog. 5: 212-217.
Li, Y. Y., Fang, H. H. P., Chen, T., Chui, H. K. 1995. UASB treatment of wastewater containing concentrated benzoate. J. Envir. Engng. (ASCE) 121: 748-751.
Lin, C. Y., Chen, C. C. 1999. Effect of heavy methals on the methanogenic UASB granule. Wat. Res. 33: 409-416.
Liu, Y., Boone, D. R., Chay, C. 1990. Methanohalophilis oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. International J. Systematic Bacteriology. 40: 111-116.
Livingston, A. G. 1993. A novel membrance bioreactor for detoxifying iudustrial wastewater: I. Biodegradation of phenol in a synthetically concocted wastewater. Biotechnol. Bioengng. 41: 915-926.
Lovley, D. R., Lonergan, D. J. 1990. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbio. 56: 1858-1864.
Lowe, E., Jain, M. K., Zeikus, J. G. 1993. Biology ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity or substrates. Microbiol. Reviews. 57: 451-509.
Luss, D. 1971. Uniqueness criteria for lumped and distributed parameter chemically reacting systems. Chem. Engng. Sci. 26: 1713-1721.
Macki, R. I., Bryant, M. P. 1981. Metabolic activity of fatty acidoxidizing bacteria and the contribution of acetate, propinate, butyrate and CO2 to methanogenesis in cattle waste at 40 and 60 C. Appl. Envir. Microbio. 41: 1363-1373.
MacLeod, F. M., Guiot, S. R., Costerton, J. W. 1990. Layered structure of bacterial aggregate produced in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol. 56: 1598-1607.
Maestrojuan, G. M., Boone, D. R. 1991. Characterization of Methanosarcina barkeri MST and Methanosarcina vacuolata Z-761T. International J. Systematic Bacteriology. 41: 267-274.
Magbanua, B. S., Hoover, P. A., Campbell, P. J., Bowers, A. R. 1994. The effect of cosubstrates on phenol degradation kinetics. Wat. Sci. Tech. 30: 67-77.
Mah, R. A., Smith, M. R. 1981. The methanogenic bacteria. The Prokaryotes (Vol. I). Springer, Berlin. 948-977.
Maillacheruvu, K. Y., Parkin, G. F. 1996. Kinetics of growth, substrate utilization and sulfide toxicity for propionate, acetate, and hydrogen utilizers in anaerobic system. Wat. Environ. Res. 68: 1099-1106.
Malina, J. F., Pohland, F. G. 1992. Design of anaerobic processes for the treatment of industrial and municipal wastes. Technomic Publishing Co., Washington, DC.
McCarty, P. L. 1964. Anaerobic waste treatment fundamentals — part II— environment requirements and control. Public Works. 95: 91-94.
McCarty, P. L. 1964. Anaerobic waste treatment fundamentals — part III — toxic materials and their control. Public Works. 95: 123-126.
Mitchell, R. 1992. Environmental microbiology. Wiley-Liss Inc., New York.
Morbidelli, M., Verma, A., Aris, R. 1987. Reactor steady-state multiplicity and stability. In Chemical Reaction and Reactor Engineering, edited by Carberry, J. J. and Varma, A., Marcel Dekker, New York. 973-1054.
Morgan-Sagastume, J. M., Jimenez, B., Noyola, A. 1997. Trace studies in a laboratory and pilot-scale UASB reactor. Environ. Tech. 18: 817-825.
Morvai, L., Mihalta, P., Czako, L., Peterfy, M., Hollo, J. 1990. The influence of organic load on granular sludge development in an acetate-fed system. Appl. Microbiol. Biotechnol. 33: 463-486.
Morvai, N., Mihaltz, P., Hollo, J. 1992. Comparison of the kinetics of the kinetics of acetate biomethanation by raw and granular sludges. Appl. Microbiol. Biotechnol. 36: 561-567.
Morsen, A., Rehm, H. J. 1987. Degradation of phenol by a mixed culture of Psedomonas putida and Cryptococcus elinovii adsorbed on activated carbon. Appl. Microbiol. Biotechnol. 26: 283-288.
Mountfort, D. O., Bryant, M. P. 1982. Isolation and characterization of an anaerobic syntrophic benzoate-degrading bacterium from sewage sludge. Arch. Microbiol. 133: 249-256.
Neufeld, R. D., Mack, J. D., Strakey, J. P. 1980. Anaerobic phenol biokinetics. J. Water Pollut. Control Fed. 52: 2367-2377.
Okaygun, N. S., Akgerman, A. 1992. Microbial dynamics in a continuously stirred tank reactor with 100 % cell recycle. Wat. Envir. Res. 64: 811-816.
Olezkiewicz, J. A., Romanek, A. 1989. Granulation in anaerobic sludge bed reactors treating food industry wastes. Biological Wastes. 27: 216-235.
O''Neill, S. P. 1971. Steady-state stability of substrate inhibited enzyme catalysis in open reaction systems. Biotechnol. Bioengng. 13: 493-502.
Ong, S. K., Bowers, A. R. 1990. Steady-state analysis for biological treatment of inhibitory substrates. J. Environ. Engng. (ASCE) 116: 1013-1028.
Owen, W. F., Stuckey, D. C., Healy, D. C., Young, L. Y., McCarty, P. L. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Wat. Res. 13: 485-492.
Ozturk, S. S., Palsson, B. O. 1989. Control of interspecies electron transfer flow during anaerobic digestion: Dynamic diffusion reaction models for hydrogen gas transfer in microbial flocs. Biotechnol. Bioengng. 33: 745-757.
Palowsky, U., Howell, J. A. 1973. Mixed culture oxidation of phenol —I. Determination of kinetic parameters. Biotechnol. Bioengng. 15: 889-896.
Parkin, G. F., Owen, W. F. 1986. Fundamentals of anaerobic digestion of wastewater sludges. J. Environ. Engng. (ASCE) 112: 867-920.
Peng, D. C., Zhang, X. W., Jin, Q. T., Xiang, L. K., Zhang, D. 1994. Effects of the seed sludge on the performance of UASB reactors for treatment of toxic wastewater. J. Chem. Tech. Biotechnol. 60: 171-176.
Pohland, F. G., Ghosh, S. 1971. Developments in anaerobic stabilization of organic wastes: The two-phase concept. Environ. Lett. 1: 255-266.
Pohland, F. G., Suidan, M. T. 1987. Prediction of pH stability in biological treatment systems. Chemi. Wastewater Tech.. 23: 441-463.
Press, W. H., Flannery, B. P., Tenkolsky, S. A. Vetterling, W. T. 1986. Numerical recipes: The art of scientific computing. Cambridge University Press, London.
Riera, F. S., Cordoba, P., Sineriz, F. 1985. Use of the UASB reactor for the anaerobic treatment of stillage from sugar cane molasses. Biotechnol. Bioengng. 27: 1710-1716.
Rittmann, R. E., McCarty, P. L. 1980. Model of steady-state-biofilm kinetics. Biotechnol. Bioengng. 22: 2343-2357.
Romette, J. L., Kernevez, J. P., Thomas, D. 1974. Memory in enzyme membranes. Nature. 249: 490-491.
Rozich, A. F., Gaudy, A. F., D’Adamo, P. D. 1983. Predictive model for treatment of phenolic wastes by activated sludge. Wat. Res. 17: 1453-1466.
Rozich, A. F., Gaudy, A. F., D’Adamo. P. D. 1985. Selection of growth rate model for activated sludges treating phenol. Wat. Res. 19: 481-490.
Rozich, A. F., Colvin, R. J. 1986. Effect of glucose on phenol biodegradation by hetergeneous population. Biotechnol. Bioengng. 28: 965-971.
Sambhunath, G. 1975. Anaerobic acidogensis of wastewater sludge. J. Water Pollut. Control Fed. 47: 30-45.
Sam-Soon, P. A. L. N. S., Loewenthal, R. E., Dold, P. L., Marais, G. V. R. 1987. Hypothesis for pelletisation in the upflow anaerobic sludge bed reactor. Wat. Sci. Tech. 13: 69-80.
Schauer, N. L., Brown, D. P., Ferry, J. G. 1982. Kinetics of formate metabolism in mathanobacterium, formicicum and methanospirillum hungatei. Appl. Environ. Microbiol. 44: 549-554.
Schmidt, J. E., Ahring, B. K. 1996. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors . Biotechnol. Bioengng. 49: 229-246.
Schroder, M., Muller, C., Posten, C., Deckwer, W. D., Hecht, V. 1997. Inhibition kinetics of phenol degradetion from unstable steady-state data. Biotechnol. Bioengng. 54: 567-576.
Shimizu, T., Uno, T., Dan, Y., Nei, N., Ichikawa, K. 1973. Continuous treatment of wastewater containing phenol by Candida tropicalis. J. Ferm. Technol. 51: 809-812.
Shen, C. F., Kosaric, N., Blaszczyk, R. 1993. The effect of selected heavy metals (Ni, Co and Fe) on anaerobic granules and their extracellular polymeric substance (ECP). Wat. Res. 27: 25-33.
Shin, H. S., Bae, B. V., Lee, J. J., Park, B. C. 1992. Anaerobic digestion of distillery wastewater in a two-phase UASB system. Wat. Sci. Tech. 25: 361-371.
Sokol., W., Migiro, C. L. C. 1996. Controlling a continuous stirred-tank bioreactor degrading phenol in the stability range. The Chemical Engngng. J. 62: 67-72.
Souza, M. E. 1986. Criteria for the utilization, design and operation of UASB reactors. Wat. Sci. Tech. 18: 55-69.
Speece, R. E. 1970. The effect of short-term temperature variation on methane production. J. Water Pollut. Control Fed. 42: 241-256.
Speece, R. E. 1983. Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Technol. 17: 416A-427A.
Stronach, S. M., Rudd, T., Lester, J. N. 1986. Anaerobic digestion processes in industrial wastewater treatment. Springer-Verlag Co., New York.
Suidan, M. T., Najm, I. N., Pfeffer, J. T., Wang, Y. T. 1988. Anaerobic biodegradation of phenol: Inhibition kinetics and system stability. J. Environ. Engng. (ASCE) 114: 1359-1376.
Sztetela, R. W., Winnicki, T. Z. 1981. A novel method for determining the parameters of microbial kinetics. Biotechnol. Bioengng. 23: 1485-1490.
Tay, J. H., Yan, Y. G. 1996. Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors. Wat. Environ. Res. 68: 1144-1150.
Tschech, G., Schink, B. 1986. Fermentative degradation of monohydroxybenzo-ates by defined syntrophic cocultures. Arch. of Microbiol. 145: 396-402.
Wang, J., Araki, T., Ogawa, T., Matsuoka, M., Fukuda, H. 1999. A method of graphically analyzing substrate-inhibition kinetics. Biotechnol. Bioengng. 62: 402-411.
Wang, Y. T., Gabbard, H. D., Pai, P. C. 1991. Inhibition of acetate methanogenesis by phenols. J. Environ. Res. 66: 794-799.
Wen, T. C., Cheng, S. S., Lay, J. J. 1994. A kinetic model of a recirculated upflow anaerobic sludge blanket treating phenolic wastewater. Wat. Environ. Res. 66: 794-799.
Westrich, J. T., Berner, R. A. 1988. The effect of temperature on rates of sulfate reduction in marine sediments. Geomicrobiology J. 6: 99-117.
Wiegant, W. M., Lettinga, G. 1985. Thermophilic anaerobic digestion of sugar in upflow anaerobic sludge blanket reactors. Biotechnol. Bioeng. 27: 1603-1607.
Williamson, K., McCarty, P. L. 1976. A model of substrate utilization by bacterial films. J. Water Pollut. Control Fed. 48: 9-24.
Woods, S. L., Ferguson, J. F., Benjamin, M. M. 1989. Characterization of chlorophenol and chloromethoxybenzene biodegradation during anaerobic treatment. Environ Sci Technol. 23: 62-68.
Wu, C. S., Huang, J. S. 1996. Bioparticle characteristics of tapered anaerobic fluidized-bed bioreactors. Wat. Res. 30: 233-241.
Wu, C. S., Huang, J. S., Yan, J. L., Jih, C. G. 1998. Consecutive reaction kinetics involving distributed fraction of methanogens in fluidized-bed bioreactors. Biotechnol. Bioengng. 57: 367-379.
Wu, M. M., Hickey, R. F. 1997. Dynamic model for UASB reactor including reactor hydraulics, reaction, and diffusion. J. Environ. Engng. (ASCE) 123: 244-252.
Wu, W., Hu, J., Gu, X., Zhao, Y., Zhang, H., Gu, G. 1987. Cultivation of anaerobic granular sludge in UASB reactors with anaerobic activated sludge as seed. Wat. Res. 21: 789-799.
Yang, R. D., Humphrey, A. E. 1975. Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol. Bioengng. 17: 1211-1235.
Zehnder, A. J. B., Huser, B. A., Brock, T. D., Wuhrmann, K. 1980. Characterization of an acetate-decarboxylating non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 124: 1-11.
Zeikus, J. G., Bowen, V. G. 1975. Fine structure of Methanospirillum hungatti. J. Bacteriol. 121: 373-380.
Zhou, G. M., Fang, H. H. P. 1997. Co-degradation of phenol and m-cresol in a UASB reactor. Biores. Technol. 61: 47-52.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳特,<由孟子與陽明看中國道德主體哲學的方法特性與發展>,《新亞學術集刊》,第三期,1982年。
2. 陳特,<由孟子與陽明看中國道德主體哲學的方法特性與發展>,《新亞學術集刊》,第三期,1982年。
3. 何澤恆,<論語孟子中所說的「權」>,《孔孟月刊》,第二十四卷,第三期,總279號,1985年11月。
4. 項退結,<基於孟荀人性論之實際可行的道德觀>,《哲學與文化》,第十七卷,第五期,1990年5月。
5. 何澤恆,<論語孟子中所說的「權」>,《孔孟月刊》,第二十四卷,第三期,總279號,1985年11月。
6. 楊日然,<從先秦禮法思想的變遷看荀子禮法思想的特色及其歷史意義>,《社會科學論叢》,第二三期。
7. 楊日然,<從先秦禮法思想的變遷看荀子禮法思想的特色及其歷史意義>,《社會科學論叢》,第二三期。
8. 項退結,<基於孟荀人性論之實際可行的道德觀>,《哲學與文化》,十七卷第五期。
9. 簡淑慧,<荀子思想與老莊關係之研究>,《孔孟月刊》,第二五卷第九期。
10. 項退結,<基於孟荀人性論之實際可行的道德觀>,《哲學與文化》,第十七卷,第五期,1990年5月。
11. 黃勇,<道德先驗主義與道德自然主義的抵牾與契合--孟子人性論與荀子人性論之比較>,《孔孟月刊》,二十九卷,第十期,1991年6月。
12. 馬國瑤,<荀子天生人成觀念之分析>,《孔孟月刊》,第二三卷第六期。
13. 項退結,<基於孟荀人性論之實際可行的道德觀>,《哲學與文化》,十七卷第五期。
14. 施銘燦,<荀子的欲望論>,《哲學與文化》,十七卷,第一期,1990
15. 施銘燦,<荀子的欲望論>,《哲學與文化》,十七卷,第一期,1990
 
系統版面圖檔 系統版面圖檔