跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 06:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳健強
研究生(外文):Chien-Chiang Chen
論文名稱:倒錐狀上流式厭氣污泥床之特性
論文名稱(外文):Characteristics of Tapered Upflow Anaerobic Sludge Bed Reacters
指導教授:黃汝賢黃汝賢引用關係
指導教授(外文):Ju-Sheng Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:129
中文關鍵詞:上流式厭氣污泥床倒錐狀多重穩定狀態基質抑制動力動力模式污泥顆粒特性酚厭氣降解模式驗證
外文關鍵詞:upflow anaerobic sludge bedtaperedmultiple steady statessubstrate-inhibited kineticskinetic modelgranule characteristicsanaerobic degradation of phenolmodel verification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
倒錐狀上流式厭氣污泥床之特性
摘 要
本研究除了推導涵蓋有污泥顆粒特性參數之上流式厭氣污泥床 (UASB) 反應器動力模式外,另以一組傳統 (angle = 0度) 與三組倒錐狀 (angle = 2.5度、5度及10度) UASB反應器採處理水迴流方式處理抑制性基質 (酚) 合成廢水,俟每一組反應器達穩定狀態時,分別自反應器內取出不同斷面處之污泥顆粒,量測其粒徑分佈以及使用批次反應器測定甲烷菌活性係數,亦藉實驗證實UASB反應器處理抑制性基質 (酚) 時,確實會存在著多重穩定狀態,最後再以穩定狀態之污泥顆粒動力分析傳統及倒錐狀UASB反應器處理抑制性基質 (酚) 之動力行為並與實驗值比較,以及藉四組UASB反應器實際操作所得之十二組實驗數據驗證動力模式。
四組UASB反應器在體積負荷範圍2.03∼20.5 kg COD/m3-d (以污泥床體積計算)、食微比範圍0.11∼0.42 kg COD/kg VSS-d之操作條件下,COD之去除率 (94.6%∼98.9%) 皆大致相近;四組UASB反應器污泥床之顆粒平均粒徑皆隨體積負荷之提高而有增大之趨勢,且污泥床下、中、上層之污泥顆粒粒徑皆隨體積負荷之提高,而有愈來愈相近之現象。此外,經由追蹤劑 (Li+) 試驗之測定及延散係數之計算結果發現,迴流比分別為12、16.3及25之傳統 (angle = 0度) 及三組倒錐狀 (angle = 2.5度、5度及10度) UASB反應器皆為趨近於CSTR之流況。
傳統UASB反應器污泥床下、中層甲烷菌活性係數 (0.18∼0.63) 大致有比污泥床上層者 (0.14∼0.50) 大之趨勢;倒錐角度2.5度及5度 UASB反應器之甲烷菌活性係數,似由低體積負荷之污泥床下、中層有較大之甲烷菌活性係數轉變為高體積負荷之污泥床上層有較大之甲烷菌活性係數之趨勢 ;倒錐角度10度 UASB反應器之甲烷菌活性係數,在高體積負荷之污泥床下、中、上層甲烷菌活性係數之差異性較不明顯。
經由懸浮生長批次反應器 (35C;打碎污泥顆粒) 之厭氣培養測定後,再經Levenberg-Marquardt algorithm非線性迴歸求得酚厭氣降解反應之Haldane型生物動力常數k、Ks及Ki值分別為0.69 mg phenol/mg VSS-d、46.2 mg phenol/L及66.4 mg phenol/L;另經Halwachs方法之線性迴歸求得強化培養乙酸甲烷化之Monod型生物動力常數k及Ks值分別為4.68 mg acetate/mg VSS-d及117 mg acetate/L。
經由UASB反應器實際操作及模式計算所得之比酚利用速率與液相酚濃度之關係得知,UASB反應器處理抑制性基質 (酚) 之動力行為乃典型之基質抑制型動力。此外,經由涵蓋有污泥顆粒特性參數之UASB反應器動力模式模擬結果,液相酚去除率模擬值與四組UASB反應器實際操作所得之全部實驗測定值之誤差在正負5%範圍內,且以污泥顆粒粒徑分佈函數計算之模擬值和面積分率平均粒徑計算者幾乎相同。
最後,值得一提者有三:(1) 四組UASB反應器處理酚基質廢水之YT值皆非常接近 (0.043∼0.050 g VSS/g CODu);(2) UASB反應器處理抑制性基質 (酚) 廢水時,確實會發生多重穩定狀態;及 (3) 於含打碎污泥顆粒之批次反應器內,強化培養甲烷菌之酚吸附量為8.47∼8.90 mg phenol/g VSS時,甲烷菌似有受到酚之刺激 (與不添加酚之控制組者比較) 而加速利用乙酸之現象,惟強化培養甲烷菌之酚吸附量大於10.64 mg phenol/g VSS時,甲烷菌似有受到酚之明顯抑制作用。

Characteristics of Tapered Upflow Anaerobic Sludge Bed Reactors
ABSTRACT
A kinetic model of upflow anaerobic sludge bed (UASB) reactors, which involves characteristic parameters of sludge granules, is proposed. Also, one conventional and three tapered UASB reactors (angle = 0o, 2.5o, 5o, and 10o) were used to treat synthetic wastewater containing the inhibitory substrate phenol. Once each of the four UASB reactors reached steady state, sludge granules removed from the UASB reactor were used to measure granule sizes and to determine activity coefficients of methanogens (by independent experiments). The existence of multiple steady states in UASB reactors treating the inhibitory substrate phenol was also verified by experiments. Finally, the steady-state-granule kinetics was used to analyze the kinetic behavior of UASB reactors treating the inhibitory substrate phenol and thereby the analyzed results were compared to experimental results. Also, the proposed kinetic model of upflow anaerobic sludge bed reactors was verified by twelve sets of experimental data.
At the volumetric loadings ranging from 2.03 to 20.5 kg COD/m3-d (based on sludge bed volume) or F/M ratios ranging from 0.11 to 0.42 kg COD/kg VSS-d, the COD removal efficiencies of the four UASB reactors do not vary significantly. With an increase in volumetric loading, the average equivalent diameter of granules (dp, avg) increases but the equivalent diameter of granules (dpi) in the lower-, middle-, and upper-part of sludge bed are nearly the same. In addition, from tracer tests the flow regimes of the four UASB reactors with recycle ratios of 12, 16.3 and 25 are close to complete-mix.
In the conventional UASB reactor, the activity coefficients of methanogens in the lower-, middle-part of sludge bed (0.18 — 0.63) are larger than those in the upper-part of sludge bed (0.14 — 0.50). In the tapered UASB reactors (angle = 2.5o and 5o), larger activity coefficients appear to shift from the lower- and middle-part of sludge bed at lower volumetric loadings to the upper-part of sludge bed at higher volumetric loadings. However in the tapered UASB reactor (angle = 10o), the activity coefficients of methanogens do not vary significantly with different parts of sludge bed at the high volumetric loading.
By using suspended-growth batch reactors (35 C; disrupted granules), the Haldane-type intrinsic biokinetic constants k, Ks and Ki (of anaerobic degradation of phenol) determined by Levenberg-Marquardt algorithm (nonlinear regression) are 0.69 mg phenol/mg VSS-d, 46.2 mg phenol/L, and 66.4 mg phenol/L, respectively. The Monod-type intrinsic biokinetic constants k and Ks (of acetate methanogenesis with enriched culture) determined by the Halwachs method (linear regression) are 4.68 mg acetate/mg VSS-d and 117 mg acetate/L, respectively.
From the relationship between the specific phenol utilization rates (obtained from either the kinetic model or treatment performance of UASB reactors) and the phenol concentration in bulk liquid, the kinetic behavior of UASB reactors treating the inhibitory substrate phenol is typical substrate-inhibited kinetics. In addition, the simulated results obtained from the kinetic model of UASB reactors, which involves the characteristic parameters of sludge granules, show that the calculated phenol removal efficiencies are only  5% deviation from all actual experimental data of the four UASB reactors. Also, the simulated results obtained from the kinetic model based on uniform granule size are closed to those based on granule size distribution.
Finally, three other findings are briefly described as follows: (1) The true growth yield YT determined from the four UASB reactors are nearly the same (0.043 — 0.050 g VSS/g CODu); (2) Multiple steady states do occur in the UASB reactor treating the inhibitory substrate phenol; and (3) In batch reactors containing distrupted granules, the enriched methanogens appear to be stimulated by phenol if (i.e. compared to that of the control) the adsorbed phenol onto disrupted granules reaches to 8.47 — 8.90 mg phenol/g VSS; however, the enriched methanogens appear to be remarkably inhibited by phenol if the adsorbed phenol onto disrupted granules reaches to 10.64 mg phenol/g VSS.

目 錄
授 權書………………………………………………………………………..1
中文摘要……………………………………………………………………….I
英文摘要…………………………………………………………………...III
目 錄……………………………………………………………………….VI
表 目 錄………………………………………………………………………IV
圖 目錄……………………………………………………………………….XI
符號說明……………………………………………………………………XIII
第一章緒論……………………………………………………………….1
1-1 研究動機……………………………………………………………….1
1-2 研究目的……………………………………………………………….4
第二章文獻回顧………………………………………………………….6
2-1 UASB反應器之發展應用………………………………………........6
2-2 倒錐狀反應器之發展與應用………………………………………...14
2-3 厭氣代謝反應機制…………………………………………………...17
2-4 酚/酚類化合物之厭氣代謝路徑..……………………………………22
2-5 生物動力……………………………………………………………...26
2-5-1Michaelis-Menten Kinetics…………………………………26
2-5-2Monod Kinetics…………………………………………… …28
2-5-3Lawrence and McCarty Kinetics…………………………..29
2-5-4Haldane Kinetics………………………………………………31
2-6 UASB反應器之污泥顆粒特性………………………………………34
2-6-1 顆粒化之機制………………………………………………………..34
2-6-2 顆粒之結構及組成………………………………………………...37
2-6-3 顆粒粒徑之分析……………………………………………………..37
2-7 倒錐狀反應器之水力特性………………..…………………………38
2-8 混合菌種之分率….………………………………………………..39
2-9 觸媒顆粒對反應動力之影響……………………………………….40
2-9-1 顆粒孔隙度…………………………………………………………40
2-9-2 顆粒粒徑對反應動力之影響………………………………………40
第三章UASB反應器動力模式……………………………………………42
3-1 動力模式之推導……………………………………………………...42
3-2 數值分析……………………………………………………….......46
第四章 實驗設備與方法…………………………………………………...49
4-1 實驗設備……………………………………………………………...49
4-1-1 UASB反應器…………………………………………………………49
4-1-2 批次反應器………………………………………………………...52
4-1-3 血清瓶反應器………………………………………………………..52
4-1-4 儀器設備…………………………………………………………...53
4-2 實驗方法…………………………………………………………….…53
4-2-1 合成廢水…………………………………………………………...53
4-2-2 UASB反應器之植種、馴化及起動…………………………………54
4-2-3 UASB反應器試程之操作……………………………………………55
4-2-4 UASB反應器之追蹤劑試驗…………………………………………57
4-2-5 酚厭氣降解及強化培養乙酸甲烷化動力常數之測定…………...57
4-2-6 甲烷菌活性係數…………………………………………………...58
4-2-7 無氧水之配製……………………………………………………...59
4-2-8 酚對甲烷化反應之影響實驗……………………………………….60
4-3實驗分析方法………………………………………………...61
4-3-1 生物動力常數之迴歸分析………………………………………...61
4-3-2 UASB反應器之流況分析……………………………………………63
4-3-3 水質與生物產氣分析……………………………………………...65
4-3-4 生物特性分析……………………………………………………...66
第五章 結果與討論………………………………………………………...77
5-1 酚厭氣降解及強化培養乙酸甲烷化之動力常數………………….77
5-2 傳統及倒錐狀UASB反應器處理酚基質合成廢水…………………81
5-2-1 有機物去除率………………..…………………………………….81
5-2-2 甲烷菌活性係數……………………………………………...83
5-2-3 污泥增殖係數…………………………………………………….84
5-2-4 酚對甲烷化之影響…………………………………………………..86
5-2-5 抑制性基質之多重穩定狀態………………………………………..87
5-3 傳統及倒錐狀UASB反應器之流況…………………………………90
5-4 傳統及倒錐狀UASB反應器之污泥顆粒特性………………………91
5-4-1 倒錐角度對污泥顆粒特性之影響…………………………………..96
5-4-2 污泥顆粒粒徑分佈…………………………………………………..99
5-4-3 生物顆粒菌相觀察………………………………………………….103
5-5 傳統及倒錐狀UASB反應器動力模式之模擬及實驗驗證………105
5-5-1 酚基質抑制型動力行為…………………………………………….106
5-5-2 UASB反應器實際操作結果與模式模擬結果之比較……………..108
第六章結 論……………………………………………………….110
參考文獻…………………………………………………………………...112
附 錄…………………………………………………………………….123
誌 謝…………………………………………………………………….128
自 述…………………………………………………………………...129

參考文獻
Agrawal, L. K., Harada, H., Okui, H. 1997. Treatment of dilute wastewater in a UASB reactor at moderate temperature : Performance aspects. J. Ferment. Bioeng. 83: 179-184.
Alphenaar, P. A., Pérez, M. C., van Berkel, W. J. M., Lettinga, G. 1992. Determination of permeability and porosity of anaerobic sludge granules by size exclusion chromatography. Appl. Microbiol. Biotechnol. 36: 795-799.
Alphenaar, P. A., Pérez, M. C., Lettinga, G. 1993a. The influence of substrate transport limitation on porosity and methanogenic activity of anaerobic sludge granules. Appl. Microbiol. Biotechnol. 39: 276-280.
Alphenaar, P. A., Visser, A., Lettinga, G. 1993b. The effect of liquid upflow velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a hight sulphate content. Biores. Technol. 43: 249-258.
Annachhatre, A. P., Khanna, P. 1987. Methane recovery from water hyacinth through whole-cell immobilization technology. Biotechnol. Bioeng. 29: 805-818.
APHA, AWWA, WPCF. 1992. Standard methods for the examination of water and wastewater. 18th edition, APHA, Washington, DC.
Aris, R. 1957. On shape factors for irregular particles: I. The steady state problem, diffusion and reaction. Chem. Eng. Sci. 6: 262-268.
Bailey, J. E., Ollis, D. F. 1986. Biochemical engineering fundamentals. 2nd edition. McGraw-Hill, New York.
Barbosa, R. A.,Sant'anna Jr, G. L.1989.Treatment of raw domestic sewage in an UASB reactor. Wat. Res. 12:1483-1490.
Berrueta, J., Castrillön, L. 1992. Anaerobic treatment of leachates in UASB reactors. J. Chem. Tech. Biotechnol. 54: 33-37.
Bhatia, D., Vieth, W. R., Venkatasubramanian, K. 1985. Steady-state and transient behavior in microbial methanification: I. Experimental results. Biotechnol. Bioeng. 27: 1192-1198.
Bhatti, Z. I., Furukawa, K., Fujita, M. 1997. Microbial diversity in UASB reactors. Pure Appl. Chem. 69: 2431-2438.
Boening, P. H., Larsen. V. F. 1982. Anaerobic fluidized bed whey treatment. Biotechnol. Bioeng. 24: 2539-2556.
Bryant, M. P., Wolin, E. A., Wolin, M. J., Wolfe, R. S. 1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Microbiol. 59: 20-31.
Cail, R. G., Barford, J. P. 1985. The development of granulation in an upflow floc digester and upflow anaerobic sludge blanket digester treating cane juice stillage. Biotech. Lett. 7: 493-498.
Campos, C. M. M., Anderson, G. K. 1992. The effect of the liquid upflow velocity and substrate concentration on the start-up and steady-state periods of lab-scale UASB reactors. Wat. Sci. Tech. 25: 41-50.
Denac, M., Dunn, I. J. 1988. Packed- and fluidized-bed biofilm reactor performance for anaerobic wastewater treatment. Biotechnol. Bioeng. 32: 159-173.
Denac, M., Miguel, A., Dunn, I. J. 1988. Modeling dynamic experiments on anaerobic degradation of molasses. Biotechnol. Bioeng. 31: 1-10.
Donlon, B., Razo-Flores, E., Luijten, M., Swarts, H., Lettinga, G., Field, J. 1997. Detoxification and partial mineralization of the azo dye mordant orange 1 in a continuous upflow anaerobic sludge blanket reactor. Appl. Microbiol. Biotechnol. 47: 83-90.
Droste, R. L., Kennedy, K. J., Lu, J., Lentz, M. 1998. Removal of chlorinated phenols in upflow anaerobic sludge blanket reactors. Wat. Sci. Tech. 38: 359-367.
Dudley, B. T., Howgrave-Graham, A. R., Bruton, A. G., Wallis, F. M. 1993. Image analysis to quantify and measure UASB digester granules. Biotechnol. Bioeng. 42: 279-283.
Duff, S. J. B., Kennedy. K. J., Brady, A. J. 1995. Treatment of dilute phenol/PCP wastewaters using the upflow anaerobic sludge blanket (UASB) reactor. Wat. Res. 2: 645-651.
Edwards, T., McBride, B. C. 1975. New method for the isolation and identification of methanogenic bacteria. Appl. Microbiol. 29: 504-545.
Evans, W. C. 1977. Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature. 270: 17-22.
Fang, H. H. P., Chan, O. C. 1997. Toxicity of phenol towards anaerobic biogranules. Wat. Res. 31: 2229-2242.
Fang, H. H. P., Chen, T., Li, Y. Y., Chui, H. K. 1996. Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor. Wat. Res. 30: 1353-1360.
Fang, H. H. P., Li, Y. Y., Chui, H. K. 1995a. UASB treatment of wastewater with concentrated mixed VFAs. J. Environ. Eng. (ASCE) 121: 153-160.
Fang, H. H. P., Li, Y. Y., Chui, H. K. 1995b. Performance and sludge characteristics of UASB process treating propionate-rich wastewater. Wat. Res. 29: 895-898.
Fang, H. H. P., Zhou, G. M. 1997. Anaerobic degradation of benzoate and cresol isomers in sulfate-rich wastewater. Wat. Sci. Tech. 36: 7-14.
Fiebig, R., Dellweg, H. 1985. Comparison between the process performance of an UASB reactor and an UASB-fixed film-combination with an acetic acid enrichment culture. Biotechnol. Lett. 7: 487-492.
Fukuzaki, S., Chang, Y., Nishio, N., Nagai, S. 1991. Characteristics of granular methanogenic sludge grown on lactate in a UASB reactor. J. Ferment. Bioeng. 72: 465-472.
Gaudy, A. F., Lowe, W., Rozich, A. F., Colvin, R. 1988. Practical methodology for predicting critical operation range of biological systems treating inhibitory substrates. J. Water Pollut. Control Fed. 60: 77-85.
Godrej, A. N., Sherrard, J. H. 1988. Kinetics and stoichiometry of activated sludge treatment of a toxic organic wastewater. J. Water Pollut. Control Fed. 60: 221-226.
Grady, C. P. L. 1990. Biodegradation of toxic organics: Status and potential. J. Envir. Eng. (ASCE) 116: 805-828.
Grotenhuis, J. T. C., Plugge, C. M., Stams, A. J. M., Zehnder, A. J. B. 1991a. Role of substrate concentration in particle size distribution of methanogenic granular in UASB reactors. Wat. Res. 25: 21-27.
Grotenhuis, J. T. C., Smit, M., Plugge, M., Yuansheng, X., van Lammeren, A. A. M., Stams, A. J. M., Zehnder, A. J. B. 1991b. Bacteriological composition and structure of granular sludge adapted to different substrate. Appl. Environ. Microbiol. 57: 1942-1949.
Guiot, S. R., Arcand, Y., Charie, C. 1992a. Advantage of fluidization on granule size and activity development in upflow anaerobic sludge bed reactors. Wat. Sci. Tech. 26: 897-906.
Guiot, S. R., Pauss, A., Costerton, J. W. 1992b. A structured model of the anaerobic granule consortium. Wat. Sci. Tech. 25: 1-10.
Halwachs, W. 1978. Km and Vmax from only one experiment. Biotechnol. Bioeng. 20: 281-285.
Hamamci, H., Ryu, D. D. Y. 1987. Performance of tapered column packed-bed bioreactor for ethanol production. Biotechnol. Bioeng. 29: 994-1002.
Han, K. H., Levenspiel, O. 1988. Extended Monod kinetics for substrate. Biotechnol. Bioeng. 32: 430-437.
Heertjes, P. M., van der Meer, R. R. 1978. Dynamics of liquid flow in an upflow reactor used for anaerobic treatment of wastewater. Biotechnol. Bioeng. 20: 1577-1594.
Heertjes, P. M., Kuijvenhoven, L. J. 1982. Fluid flow pattern in upflow reactors for anaerobic treatment of beet sugar factory wastewater. Biotechnol. Bioeng. 24: 443-459.
Hill, G. A., Robinson, C. W. 1975. Substrate inhibition kinetics: Phenol degradation by Pseudomonas putida. Biotechnol. Bioeng. 17: 1599-1605.
Hines, A. L., Maddox, R. N. 1985. Mass transfer fundamentals and applications. Prentice-Hall, New Jersey.
Huang, J. S., Wu, C. S. 1996. Specific energy dissipation rate for fluidized-bed bioreactors. Biotechnol. Bioeng. 50: 643-654.
Huang, J. C., Ray, B. T., Huang, Y. J. 1989. Sludge digestion by anaerobic fludized beds. I. Lab performance data. J. Environ. Eng. (ASCE) 115: 1139-1155.
Hulshoff Pol, L. W., de Zeeuw, W. J., Velzeboer, C. T. M. 1983. Granulation in UASB reactors. Wat. Sci. Tech. 15: 291-304.
Hwang, P. C., Cheng, S. S. 1991. Treatment of p-cresol with a recirculating UASB reactor using the concept of kinetic control. Wat. Sci. Tech. 24: 133-140.
Jih, C. G., Huang, J. S. 1994. Effect of biofilm thickness distribution on substrate-inhibited kinetics. Wat. Res. 28: 967-973.
Jih, C. G., Huang, J. S., Huang, J. C. 1992. Verification of deep-biofilm kinetics with axial dispersion in anaerobic filter. pp. (6-10)-(6-18). Int. symp. on energy, environment and information management, Argonne National Laboratory, Illinois.
Kalyuzhnyi, S. V., Martinez, E. P. Martinez, J. R. 1997. Anaerobic treatment of high-strength cheese-whey wastewaters in laboratory and pilot UASB reactors. Biores. Technol. 60: 59-65.
Kennes, C., Mendez, R., Lema, J. M. 1997. Methanogenic degradation of p-cresol in batch and in continuous UASB reactors. Wat. Res. 7: 1549-1554.
Kettunen, R. H., Rintala, J. A. 1998. Performance of on-site UASB reactor treating leachate at low temperature. Wat. Res. 32: 537-546.
Kobayashi, T., Hashinaga, T., Mikami, E., Suzuki. T. 1989. Methanogenic degradation of phenol and benoate in acclimated sludges. Wat. Sci. Tech. 21: 55-65.
Kosaric, N., Blaszczyk, R., Orphan, L. 1990a. Factors influencing formation and maintenance of granules in anaerobic sludge blanket reactors (UASBR). Wat. Sci. Tech. 9: 275-282.
Kosaric, N., Blaszczyk, R., Orphan, L., Valladares, J. 1990b. The characteristics of granules from upflow anaerobic sludge blanket reactors. Wat. Res. 12: 1473-1477.
Kurt, M., Dunn, I. J., Bourne, J. R. 1987. Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor. Biotechnol. Bioeng. 29: 493-501.
Kwong, T. S., Fang, H. H. P. 1996. Anaerobic degradation of cornstarch in wastewater in two upflow reactors. J. Environ. Eng. (ASCE) 122: 9-17.
Lawrence, A. W., McCarty, P. L. 1969. Kinetics of methane fermentation in anaerobic treatment. J. Water Pollut. Control Fed. 41: R1-R17.
Lepistö, R., Rintala, J. A. 1997. Start-up and operation of laboratory-scale thermophilic upflow anaerobic sludge blanket reactors treating vegetable processing wastewater. J. Chem. Tech. Biotechnol. 68: 331-339.
Lettinga, G., Velsen, A. F. M. van , Hobma, S. W., Zeeuw, W. J. de Klapwijk, A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 22: 699-734.
Levenspiel, O. 1972. Chemical reaction engineering. 2nd edition, John Wiley, New York.
Lin, K. C., Yang, Z. 1991. Technical review on the UASB process. Intern. J. Environ. Studies. 39 :203-222.
Luss, D. 1971. Uniqueness criteria for lumped and distributed parameter chemically reacting systems. Chem. Engng. Sci. 26: 1713-1721.
MacLeod, F. M., Guiot, S. R., Costerton, J. W. 1990. Layered structure of bacterial aggregate produced in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol. 56: 1598-1607.
Maillacheruvu, K. Y., Parkin, G. F. 1996. Kinetics of growth, substrate utilization and sulfide toxicity for propionate, acetate, and hydrogen utilizers in anaerobic system. Wat. Environ. Res. 68: 1099-1106.
McCarty, P. L., Mckinney, R. E. 1961. Volatile acid toxicity in anaerobic digestion. J. WPCF. 33: 223-232.
Morgan-Sagastume, J. M., Jimenez, B., Noyola, A. 1997. Trace studies in a laboratory and pilot-scale UASB reactor. Environ. Tech. 18: 817-825.
Morvai, L., Mihálta, P., Czakó, L., Péterfy, M., Holló, J. 1990. The influence of organic load on granular sludge development in an acetate-fed system. Appl. Microbiol. Biotechnol. 33: 463-486.
Neufeld, R. D., Mack, J. D., Strakey, J. P. 1980. Anaerobic phenol biokinetics. J. Water Pollut. Control Fed. 52: 2367-2377.
Olboter, L., Vogelpohl, A. 1993. Influence of particle size distribution on the dewatering of organic sludges. Wat. Sci. Tech. 28: 149-157.
Olezkiewicz, J. A., Romanek, A. 1989. Granulation in anaerobic sludge bed reactors treating food industry wastes. Biological wastes 27: 216-235.
O'Neill, S. P. 1971. Steady-state stability of substrate inhibited enzyme catalysis in open reaction systems. Biotechnol. Bioeng. 13: 493-502.
Ong, S. K., Bowers, A. R. 1990. Steady-state analysis for biological treatment of inhibitory substrates. J. Environ. Eng. (ASCE) 116: 1013-1028.
Owen, W. F., Stuckey, D. C., Healy, D. C., Young, L. Y., McCarty, P. L. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Wat. Res. 13: 485-492.
Ozturk, S. S., Palsson, B. O. 1989. Control of interspecies electron transfer flow during anaerobic digestion: Dynamic diffusion reaction models for hydrogen gas transfer in microbial flocs. Biotechnol. Bioeng. 33: 745-757.
Parkin, G. F., Owen, W. F. 1986. Fundamentals of anaerobic digestion of wastewater sludges. J. Environ. Eng. (ASCE) 112: 867-920.
Peng, D. C., Xingwen, Z., Qiting, J., Liagkui, X., De, Z. 1994. Effects of the seed sludge on the performance of UASB reactors for treatment of toxic wastewater. J. Chem. Tech. Biotechnol. 60: 171-176.
Peng, Y., Fan, L. T. 1997. Hydrodynamic characteristics of fluidization in liquid-soild tapered beds. Chem. Engng. Sci. 52 : 2277-2290.
Pohland, F. G., Ghosh, S. 1971. Developments in anaerobic stabilization of organic wastes: The two-phase concept. Environ. Lett. 1: 255-266.
Press, W. H., Flannery, B. P., Tenkolsky, S. A. Vetterling, W. T. 1986. Numerical recipes: The art of scientific computing. Cambridge University Press, London.
Riera, F. S., Córdoba, P., Siñeriz, F. 1985. Use of the UASB reactor for the anaerobic treatment of stillage from sugar cane molasses. Biotechnol. Bioeng. 27: 1710-1716.
Rittmann, R. E., McCarty, P. L. 1980. Model of steady-state-biofilm kinetics. Biotechnol. Bioeng. 22: 2343-2357.
Rozich, A. F., Gaudy, A. F., D’Adamo, P. D. 1983. Predictive model for treatment of phenolic wastes by activated sludge. Wat. Res. 17: 1453-1466.
Rozich, A. F., Gaudy, A. F., D’Adamo. P. D. 1985. Selection of growth rate model for activated sludges treating phenol. Wat. Res. 19: 481-490.
Rozich, A. F., Colvin, R. J. 1986. Effect of glucose on phenol biodegradation by hetergeneous population. Biotechnol. Bioeng. 28: 965-971.
Russo, S. L., Dold, P. L. 1989. Sludge character and role of sulphate in a UASB system treating a paper plant effluent. Wat. Sci. Tech. 21: 121-132.
Schauer, N. L., Brown, D. P., Ferry, J. G. 1982. Kinetics of formate metabolism in mathanobacterium, formicicum and methanospirillum hungatei. Appl. Environ. Microbiol. 44: 549-554.
Schmidt, J. E., Ahring, B. K. 1996. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors . Biotechnol. Bioeng. 49: 229-246.
Schmit, J. E., Ahring, B. K. 1997. Treatment of waste water form a multi product food-processing company, in upflow anaerobic sldge blanket (UASB) reactors : the effect of seasonal variation. Pure. Appl. Chem. 69: 2447-2452.
Scott., C. D., Hancher, C. W., 1976. Use of a tapered fluidized bed as a continuous bioreactor. Biotechnol. Bioeng. 18: 1393-1403.
Shen, C. F., Kosaric, N., Blaszczyk, R. 1993. The effect of selected heavy metals (Ni, Co and Fe) on anaerobic granules and their extracellular polymeric substance (ECP). Wat. Res. 27: 25-33.
Shin, H. S., Bae, B. V., Lee, J. J., Park, B. C. 1992. Anaerobic digestion of distillery wastewater in a two-phase UASB system. Wat. Sci. Tech. 25: 361-371.
Speece, R. E. 1983. Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Technol. 17: 416A-427A.
Suidan, M. T., Najm, I. N., Pfeffer, J. T., Wang, Y. T. 1988. Anaerobic biodegradation of phenol: Inhibition kinetics and system stability. J. Environ. Eng. (ASCE) 114: 1359-1376.
Tay, J. H., Yan, Y. G. 1996. Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors. Wat. Environ. Res. 68: 1144-1150.
Webster, G. H., Perona, J. J. 1990. The effect of tapered angle on the hydrodynamics of a tapered liquid-soild fluidized bed. J. Am. Inst. Chem. Engng. 86: 104-111.
Webster, G. H., Perona, J. J. 1988. Liquid mixing in a tapered fluidized bed. J. Am. Inst. Chem. Engng. Symp. Ser. 34: 1398-1402.
Wen, T. C., Cheng, S. S. Lay, J. J. 1994. A kinetic model of a recirculated upflow anaerobic sludge blanket treating phenolic wastewater. Wat. Environ. Res. 66: 784-799.
Wiegant, W. M., Lettinga, G. 1985. Thermophilic anaerobic digestion of sugar in upflow anaerobic sludge blanket reactors. Biotechnol. Bioeng. 27: 1603-1607.
Williamson, K., McCarty, P. L. 1976. A model of substrate utilization by bacterial films. J. Water Pollut. Control Fed. 48: 9-24.
Wu, C. S., Huang, J. S. 1995. Performance enhancement with tapered anaerobic fluidized-bed bioreactors. J. Chem. Tech. Biotechnol. 63: 353-360.
Wu, C. S., Huang, J. S. 1996. Bioparticle characteristics of tapered anaerobic fluidized-bed bioreactors. Wat. Res. 30: 233-241.
Wu, C. S., Huang, J. S., Yan, J. L., Jih, C. G. 1998. Consecutive reaction kinetics involving distributed fraction of methanogens in fluidized-bed bioreactors. Biotechnol. Bioeng. 57: 367-379.
Wu, M. M., Hickey, R. F. 1997. Dynamic model for UASB reactor including reactor hydraulics, reaction, and diffusion. J. Environ. Eng. (ASCE) 123: 244-252.
Wu, W., Hu, J., Gu, X., Zhao, Y., Zhang, H., Gu, G. 1987. Cultivation of anaerobic granular sludge in UASB reactors with anaerobic activated sludge as seed. Wat. Res. 21: 789-799.
Young, L. Y., Rivera, M. D. 1985. Methanogenic degradation of four phenolic compounds. Wat. Res. 19: 1325-1332.
Zhou, G. M., Fang, H. H. P. 1997. Co-degradation of phenol and m-cresol in a UASB reactor. Biores. Technol. 61: 47-52.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 劉淑美。1988。細菌冷凍乾燥保存之原理。食品工業發展研究所編:「微生物菌種之保存及改良」。第26-35頁。食品工業發展研究所,新竹。
2. 劉淑美。1988。細菌冷凍乾燥保存之原理。食品工業發展研究所編:「微生物菌種之保存及改良」。第26-35頁。食品工業發展研究所,新竹。
3. 蔡英傑。1998。乳酸菌應用綜論。生物產業9(4):258-264。
4. 蔡英傑。1998。乳酸菌應用綜論。生物產業9(4):258-264。
5. 黃建榕。1994。Bifidobacterium 屬乳酸菌試製酸酪乳之研究(Ⅰ)酸酪乳製造用乳酸菌之初步篩選。畜產研究 27(2):119-126。
6. 黃建榕。1994。Bifidobacterium 屬乳酸菌試製酸酪乳之研究(Ⅰ)酸酪乳製造用乳酸菌之初步篩選。畜產研究 27(2):119-126。
7. 黃建榕。1992。A. oryzae β-galactosidase於乳糖水解過程寡糖類之生合成。畜產研究 25(2):171-179。
8. 黃建榕。1992。A. oryzae β-galactosidase於乳糖水解過程寡糖類之生合成。畜產研究 25(2):171-179。
9. 張平平。1988。細菌冷凍乾燥保存之原理,第13-25頁。。食品工業發展研究所編:「微生物菌種之保存及改良」。食品工業發展研究所,新竹。
10. 張平平。1988。細菌冷凍乾燥保存之原理,第13-25頁。。食品工業發展研究所編:「微生物菌種之保存及改良」。食品工業發展研究所,新竹。
11. 周盈廷。1994。工業用菌種及DNA的保存。食品工業 26:(3):13-18。
12. 周盈廷。1994。工業用菌種及DNA的保存。食品工業 26:(3):13-18。