(3.235.108.188) 您好!臺灣時間:2021/02/26 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳怡萱
研究生(外文):Wu Yi Hsuan
論文名稱:以採樣器及吸入效率之觀點探討環境風向對氣懸微粒採樣結果之影響
論文名稱(外文):The effect of environmental wind orientations on aerosol sampling results - from the aspect of aspiration efficiencies of aerosol samplers
指導教授:蔡朋枝蔡朋枝引用關係
指導教授(外文):Tsai Perng Jy
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:70
中文關鍵詞:氣懸微粒吸入效率環境風向粒徑分布採樣採樣器夾角
外文關鍵詞:Aspiration efficiencyWind speedSize distribution samplingOrientation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
現今國際上公認之可吸入性氣懸微粒採樣準則,係假設勞工與風向間之夾角之時間分布為3600均勻分布﹔因此現階段所謂可吸入性氣懸微粒採樣器(如IOM個人採樣器)在開發時,亦以其是否可符合角度方向平均為判定原則。本研究主要利用耐火磚製造廠混合區的現場採樣資料,配合氣懸微粒吸入效率預測模式的應用,探討不同環境風向以及採樣口與風向夾角對微粒吸入量的影響,以及採樣器吸入效率對粒徑分布採樣結果之影響。本研究先以半經驗式推估人體、可吸入性氣懸微粒採樣器(IOM: inhalable aerosol personal sampler)、及總氣懸微粒採樣器(37-mm濾紙匣),在不同環境風向時之吸入效率,並探討各種採樣器在不同環境風向時是否與人體之推估結果一致;結果發現,就半經驗式推估而言,在所有情況下,37-mm採樣器之捕集結果與半經驗式推估之勞工可吸入 性微粒量均不相等,因此並非為一有效之可吸入氣懸微粒採樣器;而IOM採樣器則發現唯有在角度方向平均之情形下,且環境風速小於2m/s時,發現與半經驗式所推估之人體可吸入性微粒量一致,而當高風速時(U=4m/s),則發現IOM有低估之現象。另本研究亦嘗試就環境風向與採樣器夾角對吸入效率的影響之觀點,探討所謂"總氣懸微粒"採樣器與可吸入性氣懸微粒採樣器在捕集結果上差異之原因。結果發現,耐火磚混合區內各個採樣點內之粒徑分布,其MMAD與sg分別經由multisample median test及Bartlett's test檢定均無統計上之顯著差異,因此該作業場所之粒徑分布平均值,可以用MMAD為16.25mm、及sg為2.75描述之。依前述粒徑分布以吸入效率模式推估,發現Andersen八階分徑裝置所採集之粒徑分布,與推估之環境中存在之總氣懸微粒微粒量有所差異,因此無法直接用八階分徑採樣結果描述環境中之粒徑分布。本研究亦同時針對現場6位勞工進行IOM以及37-mm配對採樣,結果發現藉由前述半經驗模式預估之二採樣器之採樣結果比值([37-mm/IOM]T=0.72),與現場實際量測結果之比值並不相等([37-mm/IOM]M=0.37),其原因可能係勞工在現場作業時,與風向之夾角非呈角度方向平均的狀態,及受37-mm之器壁損失影響所致。因此,本研究建議未來在從事採樣器效率比較時,應該將採樣口與環境風向之夾角納入考慮,以避免在其他相同製程,但勞工面對不同環境風向時,無法正確地詮釋各採樣器間之差異;另採樣器如何避免器壁損失,亦值得探討。

In this study, the sampling results obtained from the mixing area of a refractory brick manufacturing plant are used to explain the effects of aspiration efficiencies of samplers on the aerosol sampling results and the size distribution sampling. In the first part of this study, aspiration efficiency predictive models were used to estimate the aspiration efficiencies of human heads theoretically, and examine the performances of IOM personal inhalable sampler and 37-mm cassette personal sampler. The results show that under no circumstance the 37-mm sampler could be regarded as inhalable aerosol samplers. Under low wind speed situations (£ 2m/s), the performance of IOM personal sampler falls within the tolerance bands of the aspiration efficiencies of human heads at the orientation-averaged situation. However, for wind speed at 4m/s, the performance of IOM sampler can not be the representative sampler to collect inhalable aerosol at the orientation-averaged situation. And the Andersen-collected aerosol size distributions obtained from the workplace are found to be non-significant different in term of MMAD and σg as tested by using the multisample median test and Bartlett's test, respectively. The obtained Andersen-collected size distribution, is theoretically further transferred into the size distributions of "true total aerosol" of the workplace atmosphere, IOM inhalable sampler collected, and 37-mm filter cassette collected aerosols via the uses of the aspiration efficiency predictive models. The result shows that the Andersen-collected size distribution is not suitable to be representative to the environmental size distribution. The second part of this study suggests that the ratio of collected amounts for 37-mm sampler versus IOM cassette would be 0.72 as estimated by using theoretical computations, instead of 0.37 which was directly obtained from the 17 pairs sampling data. The discrepancy as shown above is considered due to the orientations of sampled workers with respect to the wind might not be orientation-averaged as assumed in the theoretical computations, and also the wall-loss of 37-mm sampler. Obviously, the collected aerosols by different samplers are not only affected by the existing aerosol size distribution, but also by wind speed and orientation of aerosol samplers. It is concluded that inhalable aerosol sampling criterion should not only consider orientation-averaged condition, but also should take sampler's orientations and wind speeds into account in the future. In addition, the prevention of wall-loss needs to be taken into consideration on the future sampler developments.

誌謝……………………………………………………………………………..1
目錄…………………………………………………………………………..…2
圖目錄……………………………………………………………………..……4
表目錄………………………………………………………………………..…6
符號說明……………………………………………………………………….7
中文摘要……………………………………………………………………….9
英文摘要………………………………………………………………………11
第一章 前言………………………………………………………………….13
第二章 理論基礎……………………………………………………………15
第一節、 與健康有關之氣懸微粒採樣準則…………….…………….15
第二節、 常用之氣懸微粒個人採樣方法與粒徑分布評估方法……19
第三節、 氣懸微粒採樣器吸入效率預測模式…………..…………...23
第四節、 其他影響氣懸微粒吸入效率之因子……..………….…..…29
第三章 研究方法………..…….……………………………………………32
第一節、 研究架構…………..………………………………………..….32
第二節、 研究步驟……………………..……………………………..….32
第三節、 數據分析……………………..……………………………..….35
第四節、 研究限制……………………..……………………………..….38
第四章 結果與討論…………………………………………..………..…40
第一節、 以半經驗式推估在不同位相時,人體呼吸系統實際吸入微粒量與IOM及37-mm 濾紙匣個人採樣器捕集量之差異………………………………………………………………..40
第二節、 耐火磚廠混合區環境中實測之氣懸微粒的粒徑分布…...52
第三節、 依半經驗式進行各採樣器粒徑分布之推估……………….56
第四節、 個人採樣器採樣結果實測值與半經驗式推估值比較…...57
第五章 結論與建議….…………………………………..……………….62
參考文獻….…………………………………………………………………..64

ACGIH, 1995; "Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices (1995-1996)", American Conference of Governmental Industrial Hygienists.
ACGIH, 1985; " Particle Size-Selective Sampling in the Workplace", Report of the ACGIH Technical Committee on Air Sampling Procedures.
Armbuster, L., and Breuer, H., 1982; "Investigations into Defining Inhalable Dust", In Walton W. H.(ed.) "Inhaled Particles V", Pergomon, Oxford, 21-32.
Bartley, D.L., Doemeny, L.J., 1986; "Critique of 1985 ACGIH Report on Particle Size-Selective Sampling in the Workplace", Am. Ind. Hyg. Ass. J., 47(4): 443-447.
Berry, R.D., Froud, S., 1989; "An Investigation of Wind Conditions in Workplaces to Assess Their Effect on the Quantity of Dust Inhaled", HSE Internal Report No: IR/L/DS/89/3.
Badzionch, S., 1959; "Collection of Gas Borne Dust Particles by Means of an Aspirated Sampling Nozzle", Br. J. App. Phys., 10(1): 26-32.
Belyave, S. P., Levin, L. M., 1974; "Techniques for Collection of Representative Samples", J. Aerosol Sci., 5(3): 325-338.
CEN, 1992; "Comite Europeen de Normalisation(CEN) Workplace Atmospheres: Size Fraction Definitions for Measurement of Airborne Particles in the Workplace", CEN Standard EN 481.
Davies, C. N., Subari, M., 1982; "Aspiration above Wind Velocity of Aerosols with Thin-Walled nozzles Facing and at Right Angles to the Wind Direction", J. Aerosol Sci., 13(1): 59-71.
Gibson, H., Mark, D., Vincent, J. H., 1987; "A Personal Inspirable Dust Spectrometer for Applications in Occupational Hygiene Research", Ann. Occup. Hyg., 31: 463-479.
Ingham, D.B., 1981; "The Entrance of Airborne Particles into a Blunt Sampling Head", J. Aerosol Sci., 12(5): 541-549.
Ingham, D.B., Wen, X., 1993; "Dislike Body Sampling in a Turbulent Wind", J. Aerosol Sci., 24(6): 629-642.
ISO, 1992; "Air Quality- Particle Size Fraction Definitions for Health-related Sampling", ISO Technical Report ISO/TR/7708-1983(E).
Knutson, E.O., Lioy, P. J., 1995; "Measurement and Presentation of Aerosol Size Distribution", In Cohen, B. S., Hering, S.V. (ed.), "Air Sampling Instrument for Evaluation of Atmospheric Contaminants", American Conference of Governmental Industrial Hygienists, Inc.: 121-138.
Lillienberg, L., Brisman, J., 1995; "Flour Dust in Bakeries-a Comparison between Methods," In Fodgson D. and Mccallum R. I. (ed.) "Inhaled Particles VII," Pergamon Press, Oxford: 463-479.
Mark, D., Vincent, J. H., Gibson, H. and Lynch, G., 1985; "A New Static Sampler for Airborne Total Dust in Workplaces", Am. Ind. Hyg. Assoc. J., 46; 127-133.
Mark, D., Vincent, J. H. and Witherspoon, W. A., 1982; "Particle Blow-off: A Source of Error in Blunt Dust Samplers", Aerosol Sci. and Tech., 1: 463-469.
Mark, D. and Vincent, J. H., 1986; " A New Personal Sampler for Airborne Total Dust in Workplaces", Ann. Occup. Hyg., 30: 89-102.
Pich, J., 1966; "Theory of Aerosol Filtration by Fibrous and Membrane Filters", In C. N. Davies(ed.), Aerosol Science, Academic, London, 223-285.
Rubow, K., Marple, V.A., Olin, J. and McCawley, M.A., 1987;"A Personal Cascade Impactor: Design, Evaluation and Calibration", Am. Ind. Hyg. Assoc. J., 48(6):532-538.
Soderholm, S. C., 1989; "Proposed International Conventions for Particle Size-Selective Sampling", Ann. Occup. Hyg., 33(3): 301-320.
Tsai, P-J., Vincent, J. H., 1993; "Impaction Model for the Aspiration Efficiencies of Aerosol Samplers at Large Angles with respect to the Wind", J. Aerosol Sci., 24(8): 919-928.
Tsai, P-J., Vincent, J. H., Mark, D., Maldonado, G., 1995; " Impaction Efficiencies of Aerosol Samplers in Moving Air under Orientation-Averaged Conditions", Aerosol Sci. Tech., 22(2): 271-286.
Tsai, P-J., Vincent, J. H., Mark, D., 1996; " Semi-Empirical Model for the Aspiration Efficiencies of Personal Aerosol Samplers of the Type Widely Used in the Occupational Hygiene", Ann. Occup. Hyg., 40(1): 93-113.
Tsai, P.-J., Vincent, J. H., Wahl, G., Maldonado, G., 1995; "Occupation Exposure to Inhalable and "Total" Aerosol in the Primary Nickel Production Industry", Occup. Environ. Med., 52: 793-799.
Tsai, P.-J., Vincent, J. H., Wahl, G., Maldonado, G., 1996a; "Worker Exposures to Inhalable and "Total" Aerosol during Nickel Alloy Production", Ann. Occup. Hyg., 40:651-669.
Tsai, P.-J., Werner, M. A., Vincent, J. H., Maldonado, G., 1996b; "Worker Exposures to Nickel-Containing Aerosol in two Wlectroplating Shops: Comparison between Inhalable and "Total" Aerosol", Appl. Occup. Environ. Hyg.,11: 484-492.
Vincnet, J. H., Armbruster, L., 1981; "On the Quantitative Definition of the Inhalability of Airbone Dust", Ann. Occup. Hyg., 24: 245-248.
Vincent, J. H., 1987; "Recent Advances in Aspiration Theory for Thin-Walled and Blunt Aerosol Sampling Probes", J. Aerosol Sci., 19(4): 487-498.
Vincent, J. H., 1989; "Aspiration Efficiency of a Blunt Sampler in Moving Air", in "Aerosol Sampling: Science and Practice", John Wiley and Sons, Chichester: 119-137.
Vincent, J.H., Mark, D., Miller, B.G., Armbruster, L., Ogden, T.L., 1990; "Aerosol inhalability at higher windspeeds", J. Aerosol Sci., 21(5): 577-586.
Vincent, J. H., Brosseau, L. M., Ramachandran, G., Tsai, P.-J., Spear, T. M., Werner, M. A., McCullough, N. V., 1997; "Current Issues in Exposure Assessment for Workplace Aerosols", Ann. Occup. Hyg.,41(1): 607-614.
Vincent, J. H., 1995; Aerosol Science for Industrial Hygienists, Elsevier Science Inc., New York, 275-280.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔