資料載入處理中...
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
(3.237.178.91) 您好!臺灣時間:2021/03/04 09:24
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
詳目顯示
:::
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
紙本論文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
董育蕙
研究生(外文):
Tong Yu Huei
論文名稱:
都市焚化廠操作員工重金屬暴露危險性評估
論文名稱(外文):
Assessment of occupational exposure to heavy metals at municipal solid waste incinerator
指導教授:
李俊璋
指導教授(外文):
Lee Ching Chang
學位類別:
碩士
校院名稱:
國立成功大學
系所名稱:
環境醫學研究所
學門:
醫藥衛生學門
學類:
公共衛生學類
論文種類:
學術論文
論文出版年:
1999
畢業學年度:
87
語文別:
英文
論文頁數:
110
中文關鍵詞:
都市垃圾焚化廠
、
操作員工
、
重金屬暴露評估
、
危險性評估
外文關鍵詞:
Municipal solid waste incineration plants
、
Occupational exposure
、
Heavy metal
相關次數:
被引用:
1
點閱:125
評分:
下載:0
書目收藏:0
台灣地區的垃圾處理都是以衛生掩埋為主要的處理方法。但在舊有的掩埋場已趨飽和,新的掩埋場又在居民的反對下無法興建,因此焚化處理成為未來的主要垃圾處理方式。目前已有6座焚化廠在運作,預計在民國90年時會有19座的焚化廠加入運作。因此,預期將會有不少的操作員工進入焚化廠工作。而這些焚化廠的操作員工是否會在工作中暴露到危害物質而影響健康是相當值得關心的課題。重金屬是焚化廠中重要的污染物之一,其特性是經過燃燒之後會濃縮於飛灰與底灰中。因此,從事焚化爐體、廢氣處理系統、灰燼處理系統的維修、清理和故障排除等工作的員工都可能直接或間接暴露到重金屬。本研究是以個人暴露量測與生物偵測的方式,針對都市垃圾焚化廠之操作員工,進行作業環境空氣及個人生物樣本重金屬(鉛、鉻、鎘、汞、砷、鎳、銅、鋅)之採樣分析,進一步推算不同職務的操作員工之個人暴露量,以評估焚化廠的作業環境是否會對操作員工有不良健康影響的產生。
本研究針對3座都市垃圾焚化廠進行共7次的採樣,分別是B、C廠正常運作時各2次採樣及A廠在正常操作、停爐維修、停爐檢點各1次,以旋風集塵器進行全工作時程的空氣樣本採集及收集工作結束時的單泡尿液,並輔以一份問卷收集採樣對象的基本資料、工作相關情形、非職業暴露來源及過去職業暴露史等資料。採樣對象中有13位女性,90位男性,年齡分布從21-51歲,平均年齡為32歲,平均工作年資為18個月,教育程度以大專為主。在不同焚化廠間,研究對象人口學特性除工作年資外,其它皆沒有顯著差異,顯示這3廠員工的組成特性一致。
在空氣採樣部份,空氣中呼吸性粉塵濃度範圍為0.010-1.323mg/m3,皆未超過法規標準。焚化廠正常運作時,不同焚化廠間,呼吸性粉塵暴露量有顯著差異(B>C>A)。在不同工作類別間,呈現維修課比操作課稍高,管理課最低,差異並不顯著。而A焚化廠的不同操作時程之比較,發現呼吸性粉塵在不同操作狀態間沒有顯著差異。
空氣樣本重金屬分析方面,所有重金屬含量分析結果與作業環境有害物容許濃度相比較皆遠低於該標準。當焚化廠正常操作時,鉛、銅、鋅、鎳、鎘5項重金屬含量在不同廠間沒有顯著差異存在,而鉻、砷及汞3項則在不同廠間的濃度有顯著不同。而不同工作類別間的比較,鉛、鉻、砷、鎘、汞5項在不同工作類別間沒有顯著差異。銅是維修課顯著高於操作課,砷只有B、C兩廠呈現出不同工作類別間濃度有顯著差異存在。此外,A焚化廠的正常操作、停爐維修、停爐檢點3種不同操作狀態間的比較,發現砷及汞兩項是正常操作時顯著高於停爐維修和檢點,鎳則是停爐檢點時顯著高於正常操作及停爐維修。至於其他5項在不同操作狀態間沒有顯著差異存在。
生物樣本的重金屬含量方面測定了血中鉛、尿中鎳、尿中鉻、尿中鎘等4項。所有量測質與BEI比較,發現在尿中鉻有5位、尿中鎘有7位員工其測值都已超過BEI。不同焚化廠間,除了尿中鎳,另外3項都因廠別的不同而有顯著差異。在不同工作類別間的比較只有血中鉛有顯著差異。在不同操作狀態間的比較,尿中3項重金屬濃度只有鉻會因操作狀態的不同而有差異。因為生物樣本濃度易受干擾因子影響,所以針對性別、中藥服用習慣、飲酒及抽煙習慣四項與生物樣本濃度作統計檢定,發現此四項因素並不會對生物樣本造成明顯影響。而工作年資、呼吸防護具使用與否也都與生物樣本濃度進行相關統計分析,發現血中鉛與工作年資有正相關,而呼吸防護具的使用只對尿中鎳濃度有明顯影響。
最後根據IRIS所提供的重金屬單位風險度資料及參考劑量,配合本研究所建立的暴露量資料,分別進行鎘、砷的致癌風險度及鉛、銅、鋅、鎳、汞5項的危害指標的計算。發現焚化廠員工在砷的暴露上,只有A廠管理課略高於一般可接受的罹癌機率(10-6),其它皆低於10-6。而另五項重金屬的危害指標,不論是個別或加總後的HI值都在可接受範圍,顯示該五項重金屬的暴露情形不會對人體健康造成危害。因此,焚化廠員工在重金屬暴露方面是安全的。
Recently, the application of incineration to municipal solid waste has been given much attention. Incineration possesses several advantages as a municipal solid waste disposal technology : (1) toxic components of municipal solid waste can be converted to harmless compounds or, at least, to less harmful compounds; (2) the volume of municipal solid waste is great reduced by incineration; (3) Heat recovery makes it possible to recover some of the energy produced by the combustion process; (4) less land needed. From the environmental standpoint, incineration can be the best method of disposing of municipal solid waste.
Some occupational exposure researches from incinerator indicates that the possible exposure to heavy metals is also a subject of public debate. So, we want to evaluate how much heavy metals the workers working in incinerator exposure. We optimize the sampling strategy for personal exposure measurements and biological monitoring of workers. After collecting the personal exposure and biological samples , we do analysis by ICP-Ms and graphite AAS. Then we will develop a risk assessment model to determine the carcinogenic and non-carcinogenic risk of occupational heavy metals exposure.
We choose three incinerators, A B and C, being the study subject according it's rated incinerating volume. Using cyclone sampler to proceed personal exposure and collecting the end of work urine to do biological monitoring. We have sampled twice individual for B and C incinerator in the normal operating situation, and three times for A incinerator when it was at normal operating situation, stopping burning for maintaining and stopping burning for checking. We collected 140 respirable dust samples, 87 blood samples and 174 urine samples. At the same time we also collected 103 questionnaires in order to gather some information about the incinerator workers. There are 13 female in the three incinerators and the average age of the workers is 32 years old. The working time in incinerator are form 1 mouths to 4 years, the most of workers are graduate from junior college.
The respirable dust concentrations' range is 0.010-1.323mg/m3, and the average respirable dust concentrations in incinerator B was significance higher then incinerator A and C. Between the different work group, in the incinerator A the maintenance group's average concentration (0.056±0.193 mg/m3) is significance higher then management group's average concentration (0.045±0.579 mg/m3) is the lowest. Beside, The respirable dust concentration at the different operation situation was not appear the different. The concentration of eight kinds of heavy metals (Pb,Cr,Cd,Hg,As,Zn,Ni,Cu) in respirable dust are very low. The concentration of three kinds heavy metals(As ,Cr, Hg) are different between the three incinerators, and the concentration of Cr, Ni, As, Hg are dissimilar at the different operation situation. We measure Pb concentration in the blood and Cr, Cd, Ni in the urine samples. There were 7 workers who's Cd concentration in urine and 5 worker who's Cr concentration being excess BEI(5,10mg/g creatinine). The PbB and CrU concentration were different between incinerator and the operation situation. According the unit risk about As, we assessment the carcinogenic risk for incinerator workers and the carcinogenic risk of occupational As exposure is 10-fold then normal population. The other heavy metal be assessed non- carcinogenic risk by using hazard index(HI), and all HI.are less 1 to show that the exposure to these heavy metal(Pb, Cd, Hg, Ni, Cr, Cu, Zn) dose not endanger the incinerator workers.
圖目錄………………………………………………………………………………...I
表目錄………………………………………………………………………………...II
第一章 緒論
1-1研究緣起……………………………………………………………………….…1
1-2研究目的………………………………………………………………………….3
第二章 文獻回顧
2-1焚化廠的操作流程……………………………………………………………….4
2-2焚化廠中重金屬的來源與分布………………………………………………….5
2-3焚化廠中重金屬之暴露危害相關研究………………………………………….7
2-4焚化廠中常見重金屬之毒性作用…………..……………………………………9
2-5重金屬暴露風險性評估基本資料……………………………………………….11
第三章 研究材料與方法
3-1研究對象之選取………………………………………………………………….13
3-2採樣前之現場勘察……………………………………………………………….13
3-3採樣策略及方法………………………………………………………………….13
3-4樣品前處理及重金屬分析方法………………………………………………….15
3-5分析實驗之品保品管…………………………………………………………….19
3-6問卷整理及統計………………………………………………………………….20
3-7重金屬暴露資料的統計分析…………………………………………………….21
3-8風險性評估……………………………………………………………………….21
第四章 研究結果與討論
4-1現場勘察結果…………………………………………………………………….22
4-2研究對象的人口學資料………………………………………………………….23
4-3採樣結果………………………………………………………………………….24
4-4都市垃圾焚化廠作業環境中呼吸性粉塵採樣結果…………………………….24
4-5都市垃圾焚化廠作業環境中呼吸性粉塵重金屬含量分析結果……………….25
4-6焚化廠員工生物樣品重金屬含量分析結果……………………………………..35
4-7干擾因素的探討…………………………………………………………………..42
4-8操作員工的問卷資料與其重金屬暴露情形的相關分析………………………..43
4-9呼吸性粉塵與生物樣品中重金屬含量之相關分析……………………………..45
4-10操作員工重金屬暴露風險性評估………………………………………………..46
第五章 結論與建議
5-1結論………………………………………………………………………………..48
5-2建議………………………………………………………………………………..50
參考文獻………………………………………………………………………………52
附錄一(焚化廠操作員工調查問卷)
1.行政院環保署廢管處,資源回收體制之現況與未來發展,環保之聲第133期,p667-691,1997。
2.行政院環境保護署統計資料(環保署資訊網站),中華民國88年
3.張木彬、任傳雄、葉永基、吳秀東、鍾昀泰,垃圾焚化爐排氣中重金屬量測及處理效率評估,1996。
4.84年版中華民國台灣地區環境資訊,行政院環境保護署,中華民國85年3月
5. Reimann DO. Heavy Mental in Domestic Refuse and Their Distribution in Incineration Residues. Waste Management & Research 7︰57-62, 1989
6. Vogg H, Braun H, Matzger M, and Schneider J. The Specific Role of Cadmium and Mercury in Municipal Solid Waste Incineration. Waste Management and Research 4:65-74, 1986
7. 張木彬,王鯤生。桃園縣八德市、中壢市垃圾焚化特性分析調查,環基工程顧問有限公司委託中央大學計畫, 1996。
8. Morselli L, Zappoli S and Militerno S. The Presence and Distribution of Heavy Metals in Municipal Solid Waste Incinerators. Toxicological and Environmental Chemistry 37︰139-145, 1993.
9. Fernandz MA, Martinez L, Segarra M, Garcle JC, and Espiell F. Behavior of Heavy Metals in the Combustion Gases of Urban Waste Incinerators. Environmental Science & Technology 26(5)︰1040-1047, 1992.
10. Ontiver JL, Clapp TL, Kosson D S. Physicsal Properties and Chemical Species Distributions within Municipal Waste Combustor Ashes. Environmental Progress 8(3)︰200-208, 1989.
11. Pacyna JM. Estimation of the Atmospheric Emission of the Trace Elements from Anthropogenic Sources in Europe, Atmospheric Environment 18-41, 1984.
12. Clark MJ. The Nation's First Mercury Emissions Standard. An Assessment of New Jersey's Standard for Municipal Waste Management Meeting and Exhibition June,13-18, 1993.
13.台北縣環保局統計資料,中華民國87年。
14. Carl AB and Donald JL. Cadmiun and Lead Accumulation by Goldfish Exposure to Aqueous Refuse Incinerator Fly Ash Leachate. Environmental Contamination and Toxicology 43:846-849, 1989.
15. Alarie Y, Lwasaki M, Stock MF et al. Effects of Inhaled Municipal Refuse Incinerator Flu Ash in the Guinea Pig. Journal of Toxicology and Environmental Health 28:13-25, 1989.
16. Per G, Bradley E and Christer H. Increased Risk of Esophageal Cancer among Workers Exposure to Combustion Products. Archives of Environmental Health 48:243-245 , 1993.
17. Eddy A, Jerry Roseman, Dan Becker, Edward Gracely. Morbidity Among Municipal Waste Incinerator Worker. American Journal of Industrial Medicine 22:363-378, 1992.
18. Wrbitzky R, Goen T, Letzel S, Frank F, Angerer J. Internal Exposure of Waste Incineration Workers to Organic and Inorganic Substances. Int. Arch Occup Environ Health 68︰13-21, 1995.
19. Philp RB. Environmental Hazards & Human Health. CRC Press, Inc., Boca Roton., 1995.
20.Paasivirta J. Chemical Ecotoxicology. Lewis Publishers, Inc., 1991.
21.Mathews AP. Chemical Equilibrium Analysis of Lead and Beryllium Speciation in Hazardous Waste Incinerators, Proceedings of the Second International Symposium on Metals Speciation, Sparation and Recovery, II︰73-83, 1989.
22.吳家誠,重金屬之化學物種分類與分析技術,化學,49(4)︰316-322,1991。
23.Sullivan JB. Hazardous Materials Toxicology Clinical Principles of Environmental Health. Williams & Wilkins, Maryland, 1992.
24.Manahan SE. Toxicological Chemistry, LEWIS Publishers, Inc., Michigan, 1992.
25.Lauwerys RR, Hoet P. Industrial Chemical Exposure: Guidelines for Biological Materials. 2nd ed., LEWIS Publishers, Inc., Boca Raton, 1993.
26.Angerer J. Analyses of Hazardous Substances in Biological Materials. 2nd ed., VCH, New York, 1992.
27.Sheldon L. Biological Monitoring Techniques for Human Exposure to Industrial Chemicals: analysis of human fat, skin, nails, hair, blood, urine, and breath. NOYES, Park Ridge, 1986.
28.Dillon HK. Biological Monitoring of Exposure to Chemical: Metals. John Wiley & Sons, Inc., New York, 1991.
29.謝錦松、黃正義,固體廢棄物處理,修訂第三版,淑馨出版社,1992。
國圖紙本論文
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
台灣地區家戶廢棄物焚化處理政策及衝突管理之分析
2.
抽煙和職業暴露對肺癌患者肺組織中金屬元素含量之影響研究
3.
電子廢棄物再利用廠重金屬暴露評估
4.
焚化爐飛灰固化廠重金屬暴露評估
5.
焚化爐底渣處理廠重金屬暴露評估
1.
41.蔡厚男,1997,綠帶在都市景觀生態網路規劃策略上之潛力與應用:以台北都會區為例,中國園藝,43(2):92-102。
2.
41.蔡厚男,1997,綠帶在都市景觀生態網路規劃策略上之潛力與應用:以台北都會區為例,中國園藝,43(2):92-102。
1.
焚化底渣處理業勞工多氯戴奧辛/呋喃/擬似戴奧辛多氯聯苯職業暴露與健康風險評估
2.
都市垃圾焚化廠周界環境中空氣、植物及土壤所含多氯戴奧辛/呋喃之調查研究
3.
修車廠作業員工揮發性有機物質暴露評估
4.
樹脂製造業勞工血液中多溴二苯醚暴露及代謝速率研究
5.
PVC塑膠皮(布)製造業勞工鄰苯二甲酸二(2-乙基己基)酯暴露及健康風險評估研究
6.
PVC塑膠粒製造及加工作業勞工DEHP之暴露評估研究
7.
鄰苯二甲酸酯暴露程度與Kiss-1、GPR54基因多型性對性早熟女童之影響研究
8.
某廢棄鹼氯及五氯酚工廠附近居民甲基汞及戴奧辛共同暴露評估暨慢性健康影響研究
9.
汞及戴奧辛污染區域居民血中汞與心血管疾病危險因子之相關性研究
10.
性早熟女童尿液中鄰苯二甲酸酯代謝物檢測與家戶灰塵暴露之相關性研究
11.
職業客運駕駛罹患阻塞型睡眠呼吸中止症之程度與其氧化性壓力指標之相關性探討
12.
樹脂製造及應用產業勞工多溴二苯醚暴露評估研究
13.
連續長期監測二甲基甲醯胺暴露勞工之外在暴露及生物指標
14.
鄰苯二甲酸酯類環境流布及其對台灣孕婦和新生兒健康影響之相關性研究
15.
驅蟲劑工廠中對二氯苯與呼吸及皮膚暴露評估之相關與生物偵測之探討
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室