(3.237.178.91) 您好!臺灣時間:2021/03/04 07:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱毓賢
研究生(外文):Yu-Sheng Chiou
論文名稱:數位式行動輔具控制器設計及測試
論文名稱(外文):Digital Controller Design for Powered Mobility
指導教授:鍾高基鍾高基引用關係蔡明祺
指導教授(外文):K. C. ChungMi-Ching Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:98
中文關鍵詞:行動輔具電動輪椅電動代步車數位控制器機電整合馬達控制中重度殘障
外文關鍵詞:Powered MobilityPowered WheelchairScooterDigital ControllerMechatronicsMotor ControlModerate and Severe disability
相關次數:
  • 被引用被引用:27
  • 點閱點閱:238
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
電動輪椅或代步車為較嚴重神經肌肉病變之功能性障礙者、老年人或慢性病患者主要的日常生活行動輔助工具。目前的電動輪椅設計由驅動邏輯電路、類比運算放大器及機械式繼電器或功率電晶體組合而成,而以類比式控制器為系統核心,但複雜的電路設計導致系統的可靠度與使用效率降低,且難以針對不同障礙者的實際考量修改及系統功能的擴充。因此本研究的目的:應用機電整合、數位微處理科技及殘障者功能性考量,研發數位式電動輪椅/代步車控制器,以改善傳統類比式之低效率及功能性的缺點,提昇符合個人殘障功能性需求之復健科技及輔具。
控制器與馬達驅動裝置為影響輪椅操作與驅動效率的主要因素,因此本研究包括下列系統化的研發:一. 經由動力學及運動學之解析,探討電動輪椅負載重量、重心位置、摩擦力、旋轉阻力、斜坡等主要參數,並建立驅動馬達的控制設計規格,包括:馬達動力額度、速度及轉矩額度等;二. 馬達功能性測試及探討馬達驅動控制的特性與響應、控制法則及參數的選取;三. 應用微控制處理晶片電路、PWM驅動控制、編碼器速度迴授及控制法則的軟體演算,設計PID閉迴路速度控制器;四. I/O擴充介面提供一般輸出入控制,介面模組透過RS232串列通訊協定提供與PC溝通的介面;五. 控制器於馬達驅動的平台功能性測試。
研究結果顯示:一. 電動輪椅適用的馬達規格為1/2馬力、轉速3600 rpm及最低額定轉矩23.9 kg-cm;二. 驅動器設計的規格為連續輸出電流6A、瞬間輸出電流10A、輸出電壓範圍達30V;三. 控制器具有可程式化PID控制參數設定、加減速度控制規劃及緊急處理措施的功能,且可匹配控制不同規格的馬達與驅動器。
系統未來研究及改良方向,包括:控制器整合功能性測試、電動輪椅/代步車專用馬達之探討與研發、電動輪椅動力模擬系統之建立、轉矩控制之研究。
Powered wheelchairs (W/C) and scooters are the major mobility-aided device for persons with moderate/severe physical disability and chronic diseases as well as the elderly. Conventional controllers of analog design are remained in use with disadvantages of out-of-date technology, less efficiency/reliable, difficulty in system optimization and expansible. With much more demands in matching the need of individual’ disabilities, this research was aimed to develop an innovative design of digital controller and motors testing in improved powered mobility for W/C users.
This study was divided into five stages: (1) a kinematics/kinetic investigation of mass, center of mass, rolling resistances and slope factors on W/C propulsion and efficiency in relative to motor and driven systems; (2) design specifications establishment for digital controller through an integrated study of the above dynamic analysis, survey of powered mobility devices in market and motor testing on rated power, velocity, torque, current, voltage, response and characteristics in driven control; (3) a prototype design and fabrication of PID controller with closed-loop velocity feedback by microcontroller circuit, PWM driven control and encoder’ velocity feedback, control operation rules in software; (4) an interface module design for user control through a RS232 serial port communication and a I/O device for programmable and expandable purpose to PC; and (5) a bench testing of functional performance for the controller design, motors and driver system.
Based on the results of survey and dynamic analysis, the digital control design are specified as 1/2 horsepower, 3600 rpm and 23.9 kg-m for motor with continuous output current in 6A, instantaneous in 10A and maximum operation voltage up to 30V. The completed digital controller design has showed programmable functions of parameters setting in PID control and acceleration/deceleration strategic planning, emergency handling control and expandable capability in matching to various motors and drivers for optimal efficiency.
The future development will include functional testing of completed digital controller on motor control, investigation of motor design for powered W/C, development of powered W/C’s dynamic simulation system and implementation of torque control.
中文摘要 ……………………………………………………………………I
英文摘要 ………………………………………………..…………………. II
誌謝 ………………………………………………………………………...III
目錄 ……………………………………………………………………….. IV
圖目錄 ……………………………………………………………………...VI
表目錄 ……………………………………………………………………...IX
第一章 緒論
1.1 輪椅使用族群的簡介 …………………………………………………1
1.2 電動輪椅及電動代步車 ………………………………………………2
1.2.1系統架構與分類 ………………………………………………..2
1.2.2現階段的電動輪椅科技 ………………………………………..6
1.2.3使用者功能性考量 ……………………………………………..7
1.3 文獻回顧 ………………………………………………………………7
1.4 研究動機與目的 ………………………………………………………8
第二章 材料與方法
2.1電動輪椅/代步車驅動之影響因子與動態模式 ……………………..10
2.1.1運動學及動力學之驅動解析 …………………………………...11
2.1.2動力規格的解析與設定 ………………………………………...17
2.2直流伺服馬達與驅動器 ………………………………………………24
2.2.1馬達選取的考量 ………………………………………………...24
2.2.2電樞電壓控制模式 ……………………………………………...27
2.2.3驅動器設計 ……………………………………………………...35
2.3數位控制系統設計與理念架構 ………………………………………43
2.3.1 PID閉迴路速度控制系統 ……………………………………...43
2.3.2操作介面設計 …………………………………………………...45
2.3.3微控制器系統設計 ……………………………………………...46
2.4平台測試方法與步驟 …………………………………………………48
2.4.1馬達驅動控制測試系統架構與流程 …………………………...48
2.4.2 方法與實驗步驟 ………………………………………………...50
第三章 結果與討論
3.1馬達功能性測試 ………………………………………………………55
3.2數位控制器硬體電路設計與測試 ……………………………………61
3.2.1單晶片微控制器電路 …………………………………………...61
3.2.2直流馬達閉迴路控制電路 ……………………………………...64
3.2.3驅動器電路 ……………………………………………………...67
3.2.4系統重置及準位偵測電路 ……………………………………...69
3.2.5操作介面電路 …………………………………………………...70
3.3數位控制器軟體控制程式設計 ………………………………………72
第四章 結論與未來研究方向
電動輪椅模擬系統之建立 ……………………………………………….75
控制器架構及性能之研究方向 ………………………………………….75
泛用型使用者操作介面系統之研究方向 ……………………………….76
參考文獻 ………………………………………………………………….77
附錄一 系統控制程式 …………………………………………………...79
附錄二 驅動器測試程式 ………………………………………………...86
附錄三 馬達功能性測試原始資料 ……………………………………...88
附錄四 直流馬達參數量測 - 資料處理程式 …………………………..91
附錄五 直流馬達特性量測 - 資料處理程式 …………………………..94
[1] 中華民國脊髓損傷者協會編印,”脊髓損傷重建手冊”,pp4~6,中華民國八十三年四月在版。
[2] 姚堯,”同步工程基本概念及應用淺談(四)”,CAD與自動化,pp 37-39, May, 1993。
[3] Clifford Brubaker, “Ergonometric Considerations.”, Departments of Veterans Affairs, Journal of rehabilitation Research and Development-Clinical Supplement, No. 2, 1990.
[4] J. G. Thacker et. al., “Understanding the Technology When Selecting Wheelchairs.”, RESNA PRESS, UVA, 1994.
[5] R. A. Cooper, “Intelligent Control of Power Wheelchairs.”, IEEE Engineering in Medicine and Biology, pp. 423-431, 1995.
[6] C. A. MacLaurin et. al., “Wheelchair Mobility — A Summary of Activities.”, RESNA PRESS, UVA, 1981
[7] J. H. Aylor et. al., “A Fault-Tolerant Optical Joystick Control Integated Circuit for A Powered Wheelchair.”, RESNA International ’92, pp307-309 , 1992.
[8] Fred Powell and R. M. Inigo, “Microprocessor Based D.C. Brushless Motor Controller for Wheelchair Propulsion.”, RESNA International ’92, pp313-315 , 1992.
[9] R. M. Inigo, “Electric Wheelchair Permanent Magnet DC Motor Efficiency Tests.”, UVA-REC 105-82, 1982.
[10]杜光宗,”控制系統與控制馬達的選法、用法”,建宏出版社,台北
市,1996。
[11]S. T. Chapman, “Electric Machinery Fundamantals.”, McGraw-Hill, New
York, 1991.
[12]陳文耀,”電動機控制工程”,復文書局,台南市,1995。
[13]ECRI, “Evaluation : Rechargeable, Deep-Cycle, Lead-Acid Batteries for Powered Wheelchair and Scooter Users.”, Health Devices, ECRI, Plymouth Meeting, PA, Vol. 20, No. 12, pp474-494, 1991.
[14]R. M. Inigo and B. Collier, “Electric Wheelchair Propulsion System Efficiency Study”, UVA-REC 101-84,1984.
[15]B. W. Johnson and J. H. Aylor, “Dynamic Modeling of an Electric
Wheelchair”, IEEE Transactions on Industry Applications, IA-21, No. 5,
1985.
[16]R. M. Inigo et. al., “A Improved DC-DC Converter for Electric
Wheelchair Propulsion.”, RESNA 14th Annual Conference, pp148-
150,1991
[17]M. R. Ford et. al., ”Improved Wheelchair Gearbox Efficiency.”, RESNA
proceedings of the 14th Annual Conference, 1991.
[18]N. Mohan, et. al., “Power Electronics”, John Wiley & Sons, USA, 1995.
[19]J. H. Aylor, R. L. Ramey and G. Cook, ”Design and Application of a Microprocessor PID Predictor controller.”, IEEE IECI Transactions, Vol. IECI-27, No. 3, 1980.
[20]B. W. Johnson and J. H. Aylor, “ Modeling Wheelchair Dynamics for the Design of a Microcomputer-Based Controller.”, Proceedings of the IECI Conference, pp. 70-75, 1981.
[21]Yasuhiko Dote, “ Servo Motor and Motion Control Using Digital Signal Processors.”, Prentice Hall, New Jersey, 1990.
[22]許景淵,“電子差速式電動輪椅動力模組”,國立台灣大學機械工程研究所碩士論文,1997。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔