(3.215.180.226) 您好!臺灣時間:2021/03/06 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳榮治
研究生(外文):Rong Jyh Chen
論文名稱:電化學石英晶體微天平法在生醫感測用高分子薄膜的特性探討
論文名稱(外文):Investigation the characteristics of polymer thin film for biosensor based on EQCM method
指導教授:張憲彰
指導教授(外文):Hsien-Chang Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:152
中文關鍵詞:電化學石英晶體微天平Polyviologen輔助離子巴拉刈Methyl viologen二量體化NADH
外文關鍵詞:EQCMPolyviologenCounter ionParaquatMethyl viologenDimerizationNADH
相關次數:
  • 被引用被引用:2
  • 點閱點閱:331
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以電化學石英晶體微天平法(EQCM),試圖在進行高分子電化學聚合同時,並即時監測電極(固體)/液體界面間所起的物理及化學的變化。實驗中以帶正電荷性的PV (polyviologen) 與中性的PPD (poly-pheneylendiamine)等高分子修飾於金電極上後,進行氧化還原反應與離子進出高分子膜中的研究與應用,且由頻率變化得知膜內重量改變與膜硬度或緻密度的不同。除了探討出在金電極上製備PV膜之新條件外,並在製膜之過程均為EQCM所監測,且對某些離子(如Cl-與ClO4-)因與PV膜親和性不同,而對膜本身的輔助離子(counter ion)之影響加以討論;且藉由不同大小分子量的物質對進出膜內外的難易程度做探討。
在PV修飾電極的應用上,對巴拉刈(methyl viologen;MV)檢測的可行性做探討;由PV膜在含巴拉刈之水溶液中的EQCM響應訊號分析顯示:水、陰離子與巴拉刈分子的進出主宰著膜重量的變化。經由比較分析顯示PV修飾電極可在較小的負電位區間即可增強對巴拉刈的感測能力;進一步驗證導致頻率變化的原因並非還原態的V+./ MV+.起二量體化(dimerization)現象,而是巴拉刈在四級化過程所加入的輔助離子(Cl-、Br-、I-或ClO4-)與膜之間的的相互關係;儘管如此,在PV修飾電極環境下,對MV2+(ClO4-)檢量範圍可由0 ~ 0.8 mM,且檢測極限高達0.1 μM。
高分子膜應用在生醫感測器上已行之有年,其中本研究群所開發的PV膜為一穩定性高、具氧化還原特性且帶正電性的導電性高分子膜,所以PV膜在酵素固定與當電子傳遞功能上有十分優異的特性;由先前對NADH感測器的研發經驗得知,Dp(NADH的氧化還原酵素)與帶負電性的電子傳遞物質(Fe(CN)64-或AQ),可藉由簡單的吸附方式固定於PV膜中,達到極高的偵測效能,但一般以電化學方式只能在修飾後才知道酵素修飾電極的功能,然酵素與電子傳導媒體進出膜的情形並無法得知。以EQCM法進一步由頻率改變得知酵素或電子傳遞物質進出情形、前後順序或固定後是否會釋放(release)出來等問題,都決定此酵素修飾電極的檢測能力。實驗證實固定順序為Au/PV/ Fe(CN)64-/Dp的酵素電極,在偵測體系中若不加入電子傳遞物質(mediator)的話,效果不佳;而Au/PV/Dp / Fe(CN)64-酵素電極檢量範圍由0 ~ 1.6 mM,且偵測極限高達1 μM;Au/PV/Dp/2,6-AQ酵素電極的檢量範圍由0 ~ 0.8 mM,且偵測極限同樣高達1 μM。

The EQCM technique has become an excellent tool to study the interfacial phenomena and ion permeability at polymer modified electrodes, since a mass change of the polymer film can be determinated in situ during electrochemical treatment. In this study, a novel polyviologen (PV) modified gold electrode was successful fabricated by electropolymerization in a viologen oligomer containing acidic electrolyte by step-hold method at -0.95 V (vs. Ag/AgCl) for 100 sec, and analyzed in viologen-free phosphate buffer solution. From the cyclic voltammetric (CV) behavior of the resulting PV electrode, we found that it showed very stable and electroactive when the pH value was controlled at ca. 7, and the porous and positive characteristic of the PV electrode could be identified.
The application of Au/PV modified electrode were use to paraquat sensor based on EQCM method. The sensitive PV-modified Au/quartz electrode for determination of MV2+ in PBS using EQCM is discussed on the basis of analyte behavior in cyclic voltammetry. It has been found from comparative studies for MV(ClO4-) and NaClO4 that overthrowing the dimerization between paraquat and PV. But relative to an uncoated electrode, the PV-modified Au/quartz electrode really enhances the EQCM response for paraquat in fewer negatives potential. A possible mechanism of the interaction between MV2+ and PV film has been proposed to explain frequency responses of PV-modified Au/quartz electrode for MV2+. Finally, two quantify parameter with linear calibration curves in the range from 0.1 to 1.0 mM for determination, such as having a low detecting limitation (0.1 μM).
It possessed an excellent preconcentration ability for anionic mediator (Med) and NADH oxidase (Diaphorase, Dp) which showed multi-negative charge in a neutral buffer solution. The NADH sensing electrode (PV(Dp)/Au) could be prepared which made enzyme and Med to be preconcentration by simply immersing the PV electrode in Dp and Med containing solution. Moreover, the process of the enzyme-Med immobilization electrode plays an important role. Such a resulting electrode of Au/PV/ Fe(CN)64-/Dp had bad calibration curve when Fe(CN)64- free in the solution. But a limitation down to 1 μM for NADH, and its linear range could reach 1.6 mM with Au/PV/Dp / Fe(CN)64- electrode. Another Med was used on this of Au/PV/Dp/2,6-AQ. The resulting electrode having a high anionic exchangable capability and showed a high performance for NADH detection; such as having a low detecting limitation 1.0 μM and a linear range for NADH calibration from 0 mM to 0.8 mM.

中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
致謝……………………………………………………………………Ⅲ
表目錄…………………………………………………………………Ⅳ
圖目錄…………………………………………………………………Ⅴ
第一章 緒論…………………………………………………………..1
1-1 生醫感測器的定義與發展……………………………………….1
1-2 生醫感測器的組成……………………………………………….3
1-3 感測電極的表面處理方法………………………………….……12
1-3-1 前處理方法…………………………………………………..…12
1-3-2 電極表面的分子設計…………………………………………..13
1-3-3修飾與固定法……………………………………………….24
1-4 研究動機、目的與未來前瞻性…………………………………26
1-5 研究理念與方法架構……………………………………….…..28
第二章 理論基礎……………………………………………………29
2-1 電化學原理與應用………………………………………………29
2-1-1 循環伏安法 ( cyclic voltammetry )……………………………29
2-1-2 電位階昇法 (potential step)……………………………………32
2-2 電化學石英晶體微天平原理……………………………………35
2-2-1 壓電與反壓電效應……………………………………………35
2-2-2 晶體切割角度與特性…………………………………………36
2-2-3 石英晶體微天平振盪之原理…………………………………37
2-3 酵素電極反應機制………………………………………………41
2-3-1 酵素反應分類………………………………………………….41
2-3-2 利用電子傳遞物質(Mediator)的酵素電極……………………42
2-3-3 無電子傳遞物質的酵素電極…………………………………..44
第三章 實驗…………………………………………………………..45
3-1藥品與配製方法………………………………………………….45
3-2儀器與設備……………………………………………………….48
3-2-1 電化學反應設備………………………………………………48
3-2-2 EQCM設備與系統架構……………………………………….51
3-2-3 其他實驗設備…………………………………………………53
3-3實驗設計與方法…………………………………………………54
第四章 結果與討論…………………………………………………58
4-1 金電極上製作PV膜(Au/PV)的製備條件探討………………..58
4-1-1 Viologen oligomer之電化學行為…………………………….59
4-1-2 金電極上製作PV膜(PV/Au)的製備條件探討……………..62
4-1-3 不同電解液與製膜效果探討………………………………...71
4-1-4 側鏈長度不同的VO(3-5)2+ (PV3-5)與製備條件之殊異………..82
4-1-5 電解液對PV膜成膜的輔助因素探討………………………86
4-2 由EQCM做Au/PV修飾電極特性探討…………………………89
4-2-1 膜的特性探討…………………………………………………90
(1) Au/PV Type………………………….……………………………91
(2) Scan rate與膜的行為……………………………………………98
(3) 膜的穩定性(stability)……………………………………………90
4-2-2 不同電解液對膜行為的探討…………………………………99
4-2-3 EQCM法於PV/Au膜對Cl- 與ClO4- 離子交換行為探討…101
(1) 電位掃引方式………………………….……………………….101
(2) 定電位方式……………………………….………………….…103
4-2-4 Fe(CN)64-與酵素(Diaphorase)進出膜的現象…………………105
(1) PV/Au膜先濃縮Fe(CN)64-再加酵素(Diaphorase)之QCM行為…105
(2) PV/Au膜先濃縮酵素(Diaphorase)再加Fe(CN)64-之QCM行為…106
4-2-5 分子量大小不同物質進出膜之現象…………………………108
4-3 以EQCM法對巴拉刈的檢測分析研究…………………………109
4-3-1 PV3、PV4、PV5對巴拉刈檢測的可行性……………………..110
4-3-2 以定電位方式對巴拉刈的檢測與其檢測極限………………112
4-3-3 巴拉刈本身所帶的輔助離子對頻率響應的影響……………121
4-4-4 二量體(Dimerization)結合假設的正確性……………………123
4-4 以EQCM法探討NADH感測能力與PV膜之間的關係…………125
4-4-1 以PV膜吸附酵素後對NADH的檢測效應……………………127
4-4-2 以2,6-AQ當電子傳遞媒體時對NADH的檢測效應………….133
4-4-3 電極界面反應與檢測原理……………………………………136
4-4-4 施加電位對帶負電物質吸附效能改善探討…………………137
4-5 以EQCM法觀察PPD膜在不同條件下製膜過程…………….139
第五章 結論…………………………………………………………..142
參考文獻………………………………………………………………147
附錄……………………………………………………………………153

[1] C. Lu, and A.W. Czanderna (Eds.), "Application of piezoelectric quartz crystal microbalance", Elsevier Science Publishing Company Inc., (1984).
[2] P. L. Konash, and G. J. Bastiaans, "Piezoelectric crystal as detectors in liquid chromatography", Anal. Chem., Vol. 52, pp. 1929-1931, (1980).
[3] T. Nomura, "Single-drop method for determination of cyanide in solution with a piezoelectric quartz crystal", Anal. Chim. Acta, Vol. 124, pp. 81-84, (1981).
[4] T. Nomura, and M. Iijima, "Electrolytic determination of nanomolar concentrations of silver in solution with a piezoelectric quartz crystal", Anal. Chim. Acta, Vol. 131. pp. 97-102, (1981).
[5] C. P. Wilde, and M. Zhang, "In situ probing of the adsorption pf Pb2+ on oxidised platinum electrochemical quartz crystal microbalance", J. Electroanal. Chem., Vol. 338, pp. 359-365, (1992).
[6] T. W. Schneider and D. A. Buttry, "Electrochemical quartz-crystal microbalance studies of adsorption and desorption of self-assembled monolayers of alkyl thiols on gold", J. Am. Chem. Soc., Vol. 115, Iss. 26, pp. 12391-12397, (1993).
[7] W. Koh, D. Bubois, W. Kutner, M. T. Jones, and K. M. Kadish, "Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance studies of buckminsterfullerence (C60) film electrodeposition and tetra-n-butylammonium electrodoping in acetonitrile", J. Phys. Chem., Vol. 96, pp. 4163-4165, (1992).
[8] M. Deakin, T. Li, and O. Melory, J. Electroanal. Chem., Vol. 243, pp. 343-351, (1988).
[9] J. Wang, M. D. Ward, R. C. Ebersole, and R. P. Foss, "Piezoelectric pH sensor: AT-Cut quartz resonators with amphoteric polymer films", Anal. Chem., Vol. 65, pp. 2553-2562, (1993).
[10] D. O. Orata, and D. A. Buttry, "Virtues of composite structures in electrode modification - preparation and properties of poly(aniline) nafion composite films", J. Electroanal. Chem., Vol. 257, Iss.. 1-2, pp. 71-82, (1988).
[11] C. Barnes, C. D’Silva, J. P. Jones, and T. J. Lewis, " Lectin coated piezoelectric crystal biosensors ", Sensor & Actuator B, Vol. 7, pp. 347-350, (1992).
[12] Th. Wink, S. J. van Zuilen, A, Bult, and W. P. van Bennekom, " Tutorial review self-assembled monolayers for biosensors", Analyst, April, Vol. 122, pp. 43R-50R, (1997).
[13] R. W. Murray, Electroanalytical Chemistry, Vol. 13, ed., A. J. Bard (New York: Dekker), p. 191, (1984).
[14] M. Nishizawa, M. Shibuya, T. Sawaguchi, T. Matsue, and I. Uchida, J. Phys. Chem., Vol. 95, p. 9042, (1991).
[15] M. Nishizawa, T. Matsue, and I. Uchida, Sensor & Actuator B, Vol. 13-14, p. 53, (1993).
[16] M. Nishizawa, Y. Miwa, T. Matsue, and I. Uchida, J. Electrochem. Soc., Vol. 140, p. 1650, (1993).
[17] S. R. Wasserman, Y. T. Tao, and G. M. Whitesides, Langmuir, Vol. 5, p. 1074, (1989).
[18] L. B. Bangs, "Bibliography: uniform latex particles", Seragen Diagonstics Inc., Indianapolis, (1984).
[19] B. R. Bhattacharyya, and B. D. Halpern, "Application of monomonodisperse functional and fluorescent latex particles", Polym. News, Vol. 4, p. 107, (1977).
[20] G. A. Quash, and M. Aymard, "A feyuin-latex agglutination test for detecting the neuraminidases of myxoviruses in allantoic fluid", K. Biol. Stand., Vol. 10, pp. 115, (1982).
[21] P. N. Bartlett and J. M. Cooper, "A review of the immobilization of enzymes in electropolymerized films", J. Electroanal. Chem., Vol. 362, p. 1,(1993).
[22] N. C. Foulds, C.R. Lowe, "Immobilization of glucose-oxidase in ferrocene-modified pyrrole polymers", Anal. Chem., Vol. 60, p. 2473, (1988).
[23] N. Sangodkar, S. Sukeerthi, R. S. Srinivasa, R. Lal, and A. Q. Contractor, "A biosensor array based on polyaniline", Anal. Chem., Vol. 68, pp.779-783, (1996).
[24] J. P. Lowry, R. D. O’Neill, "Partial characterization in vitro of glucose oxidase-modified poly(phenylenediamine)-coated electrodes for neurochemical analysis in vivo", Electroanal., Vol. 6, pp. 369-379, (1994).
[25] J. Q. Sun, Y. P. Sun, S. Zou, X. Zhang, C. Q. Sun, Y. Wang, and J. C. Sen, "Layer-by-layer assemblies of polycation bearing Os complex with electroactive and electroinactive polyanions and their electrocatalytic reduction of nitrite", Macromol. Chem. and Phys., Vol. 200, Iss. 4, pp 840-844, (1999).
[26] Z. Zhang, H. Liu, and J. Deng, "A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode", Anal. Chem., Vol. 68, pp.1632-1638, (1996).
[27] M. Situmorang, J. J. Gooding, D. B. Hibbert, D. Barnett, "Electrodeposited polytryramine as an immobilization matrix for enzyme biosensors", Biosen. Bioele., Vol. 13, pp. 953-962, (1998).
[28] N. C. Foulds, C.R. Lowe, "Immobilization of glucose-oxidase in ferrocene-modified pyrrole polymers", Anal. Chem., Vol. 60, p. 2473, (1988).
[29] G. Harsanyi, "Polymer films in sensor applications", Techonmic Publishing Company Inc., (1995).
[30] I. Engelberg, and J. kohn, "Physicomeachanical properties of degradable polymers used in medical applications: A comparative study", Biomat., Vol. 12, pp.292-304, (1991).
[31] Christopher M. A. Brett and Ana M. O. Brett, Electrochemistry principle, methods, and applications. pp. 310-325, (1993).
[32] D. N. Gway, M. H. Keyes and B. Watson, "Immobilized enzymes in analytical chemistry", Anal. Chem., Vol. 49, p. 1067A, (1977).
[33] J. B. Loic and R. C. Pierre Ed., "Biosensor principles and applications", Marcel Dekker, Inc., New York, (1991).
[34] H. C. Chang, T. J. Cheng, R. J. Chen, "EQCM studies of paraquat on gold electrode modified with electropolymerized film", Electroanal., Vol. 10, Iss.. 18, pp 1275-1280, (1998).
[35] S. A. Emr and A. M. Yacynych, "Use of polymer-films in amperometric biosensors", Electroanal., Vol. 7, p. 913, (1995).
[36] S. Yabuki, H. Shinohara, Y. Ikariyama, M. Aizawa, "Electrical-activity controlling system for a mediator-coexisting alcohol-dehydrogenase NAD+ conductive membrane", J. Electroanal. Chem., Vol. 277, p. 179, (1990).
[37] H. C. Chang, M. Osawa, T. Matsue, and I. Uchida, "A novel polyviologen electrode fabricated by electrochemical crosslinking", J. Chem. Soc., Chem. Commun., p. 611, (1991).
[38] G. Z. Sauerbrey., Z. Phys., Vol. 155 p. 206, (1959).
[39] M. J. Green, H. A. O. Hill, "Amperometric enzyme electrodes", J. Chem. Soc., Faraday Trans. 1, Vol. 82, p. 1237, (1986).
[40] T. Yao, T. Wasa, "Simultaneous determination of L(+)-lactic and D(-)-lactic acid by use of immobilized enzyme in a flow-injection system", Anal. Chim. Acta, Vol. 175, p. 301, (1985).
[41] H. C. Chang, J. C. Tsuei and T. J. Cheng, submitted for publication.
[42] T. Lotzbeyer, W. Schuhmann, and H. L. Schmidt, "Minizymes. A new strategy for the development of reagentless amperometric biosensors based on direct electron-transfer processes", Bioelectrochem. and Bioene., Vol. 42, pp.1-6, (1997).
[43] V. Razumas, and T. Arnebrant, "Direct electrochemistry of microperoxidase-11 at gold electrodes modified by self-assembled monolayers of 4,4’-dithiodipyridine and 1-octadecanethiol", J. Electroanal. Chem., Vol. 427, pp. 1-5, (1997).
[44] J. Redepenning, B. R. Miller, and S. Burnham, "Reversible voltammetric response of electrodes coated with permselective redox films", Anal. Chem. Vol. 66, pp. 1560-1565, (1994).
[45] E. Katz, and I. Willner, "Kinetic separation of amperometric response of composite redox-active monolayers assembled onto Au electrodes: implications to the monolayers’ structure and composition", Langmuir, vol. 13, pp. 3364-3373, (1997).
[46] I. Willner, N. lapidott, A. Riklin, R. Kasher, E. Zahavy, and E. Katz, "Electron-transfer communication in glutathione reductase assemblies: electrocatalytic, photocatalytic, and catalytic systems for the reduction of oxidized glutathione", J. Am. Chem. Soc., Vol. 116, pp. 1428-1441, (1994).
[47] P. Chen and R. L. McCreery, "Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification" Anal. Chem., Vol. 68, pp. 3958-3965, (1996).
[48] J. L. Corbin, and G. D. Watt, "A chemical preparation of pure reduced viologens for use as biomolucular reducing reagents", Anal. Biochem., Vol. 186, p. 86, (1990).
[49] Y. Sakai, Y. Sadaoka, M. Matsuguchi, and K. Hirayama, "Water resistive humidity sensor composed of interpenetrating polymer networks of hydrophilic and hydrophobic methacrylate" Transducers ’91, Int. Conf. On Solid State Sensors and Actuators, San Francisco, CA, pp. 562-565, (1991).
[50] M. Watanabe, K. Sanui, N. Ogata, T. Kobayashi, and Z. htaki, "Ionic conductivity and mobility in network polymers from poly (propylene oxide) containing lithium perchlorate", J. Appl. Phys., Vol. 57 (1), pp. 123-128, (1985).
[51] P. R. Sorensen, and T. Jacobsen, "Conductivity, charge transfer and transport number-An AC-investigation of the polymer electrolyte LiSCN-poly (ethyleneoxide)", Electrochim. Acta, Vol. 27. No. 12, pp. 1671-1675, (1982).
[52] R. W. Murray, 34. "Polymer modification of electrodes", Ann. Rev. Mat. Sci., Vol. 141, p. 45, (1984).
[53] S. E. Creager, M. A. Fox, "Solute permeation in thin adsorbed layers of poly-(para-xylyl-viologen)-solvation, counterion, and electron-transfer kinetic effects", J. Electrochem. Soc., Vol. 137, p. 2151, (1990).
[54] J. A. Bruce, M.S. Wrighton, "Electrostatic binding of electroactive and nonelectroactive anions in a surface-confined, electroactive polymer: Selectivity of binding measured by auger spectroscopy and cyclic voltammetry", J. Am. Chem. Soc., Vol. 104, p. 74, (1982).
[55] K. Y. Tam, R. L. Wang, C. W. Lee, and R. G. Compton, "Applications of the channel flow cell for UV-visible spectroelectrochemical studies: the kinetics of dimerization of the methyl viologen radical cation", Electroanal., Vol. 9, No. 3, pp. 219-224, (1997).
[56] K. Shimazu, M. Yanagida, and K. Uosaki, "Simultaneous UV-visible spectroelectrochemical and quartz crystal microgravimetric measurements during the redox reaction of viologens", J. Electroanal. Chem., Vol. 350, pp. 321-327, (1993).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔