跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 17:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃月珠
研究生(外文):Yueh-Chu Huang
論文名稱:不同大小輪椅手推輪對上肢生物力學之效應
論文名稱(外文):The Effect of Handrim Diameter on Biomechanics of Upper Extremity in Wheelchair Propulsion
指導教授:蘇芳慶蘇芳慶引用關係
指導教授(外文):Fong-Chin Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:95
中文關鍵詞:輪椅生物力學手推輪關節力矩
外文關鍵詞:wheelchairbiomechanicshandrimjoint moment
相關次數:
  • 被引用被引用:10
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
目前在台灣到底有多少的輪椅使用者並沒有明確的資料指出,但有數據顯示在台灣醫療器材的消耗上,輪椅占一重要支出,可以見得輪椅的使用在台灣為數不少。對於長期使用手推輪椅的使用者而言,上肢的過度使用傷害是顯而易見的。而過去的文獻也證實肩部以及腕部的肌肉骨骼傷害與輪椅使用者有明顯的相關性。所以如何改善輪椅使用者驅動輪椅方式,以期達到一個較有效率的輪椅驅動是目前研究的重要課題;輪椅機構設計與輪椅驅動有密切的關係,而輪椅的手推輪大小是最直接影響到輪椅驅動的介面,所以本實驗最主要目的在分析不同手推輪大小對上肢驅動輪椅時運動學與動力學的的影響;評估輪椅驅動時肩、肘、腕關節之運動學及動力學參數受到手推輪改變的影響。並利用個別關節間產生的力矩值以輪椅驅動力量比率 (wheelchair propulsion strength rating, WPSR) 來表示。
12位健康的受試者參與此實驗。輪椅驅動實驗的上肢運動資料是由動作分析系統收集,量測驅動輪椅時受試者手與推輪之間的接觸力及力矩是利用一六軸力量-力矩量測系統;配合三維上肢生物力學上肢模型及軟體以評估輪椅驅動時肩、肘、腕關節之角運動、力量及力矩。使用Kin-Com肌力儀量測個別關節最大等長收縮力矩,結合力量-力矩量測系統量得個別關節在輪椅趨動時最大力矩值,計算比較個別關節輪椅趨動力量比值。實驗選取三種不同直徑(大、中、小)的手推輪,分別為54、43、32公分。實驗結果利用單一因子變異數分析(one-way ANOVA)檢驗不同手推輪大小對時間、運動學與動力學參數的影響。
本實驗結果顯示在時間、運動學與動力學參數上皆具有顯著統計上的差異。運動學方面的探討包含輪椅驅動之動作模式與各關節的活動角度;不論在何種手推輪大小驅動下的動作大都有固定的模式,無太大的差異;而越大的手推輪所需關節活動度就越大。在動力學的表現上,手推輪越大在其驅動效能越高,但需要較大的關節力矩、輪椅驅動力量比值。
Till now, we don’t have sufficient information about the number of wheelchair users in Taiwan. It is believed that the wheelchair plays a key role for the disabled daily mobility. Hand/wrist problems, shoulder pain and other upper extremity injuries are well-known health problems among these manual wheelchair propulsion activities. Literatures demonstrate that the high incidence of upper extremity musculoskeletal problems may be due to overuse or incorrect use of manual wheelchair. To reduce even prevent the injuries, it is necessary to understand the wheelchair propulsion activity. In this study, we analyze three-dimensional kinematics and kinetics to facilitate the understanding of how net joint resultant loads may predispose wheelchair users to musculoskeletal problems at the shoulder, elbow, and wrist. Especially, the effect of hand-rim diameter was investigated from biomechanical point of view. The data collected were expressed in terms of a wheelchair propulsion strength rating (WPSR). The WPSR is being defined as the ratio between an intersegmental joint moment generated during propulsion and that generated during an isometric maximum strength test.
Twelve normal subjects (age 23.51.88 yrs, weight 66.38.09 kg) without any history of upper extremity injury participated in this study. A six-camera Expert Vision™ motion analysis system was used to collect the three-dimensional trajectories data of the markers placed on the right upper limb. A standard type manual wheelchair with an instrumented wheel consists of a six-component load cell was used to collect the forces and moments applied on the hand-rim by users. The joint isolated maximum isometric voluntary moments of upper extremity were collected by the Kin-Com dynamometer. To evaluate the effect of hand-rim diameter, each subject performed at least three tests for three different diameter of hand-rims. Their diameters are 32, 43, 54 cm, respectively. To compare the performance parameters in propelling the three different hand-rim sizes, a one-factor analysis of variance was used.
The results of this study indicated that the hand-rim diameter affected the performance in wheelchair propulsion including kinematic and kinetic parameters. The movement patterns of wheelchair propulsion were similar in three conditions. The motion pattern of individual subjects was highly consistent, similar, and repeatable during wheelchair propulsion. The subjects perform greater range of motion during pushing larger hand-rim. The large diameter hand-rim was more advantageous in mechanical efficiency in consideration of propulsive force and fraction effective force. It required, however, greater joint moments, joint power and joint WPSR of upper extremity.
INTRODUCTION
1.1 Preface
1.2 Literature Review
1.2.1 Clinical Problem
1.2.2 Wheelchair Propulsion
1.2.3 Kinematics
1.2.4 Kinetics
1.3 Motivation and Purposes
MATERIALS AND METHODS
2.1 Subjects
2.2 Experimental Equipment
2.2.1 Manual Handrim Wheelchair
2.2.2 Instrumental Wheel
2.2.3 Motion Analysis System
2.2.4 Isokinetic Dynamometer
2.3 Experimental Protocol
2.3.1 Marker Set
2.3.2 Three-Dimensional Model
2.3.2.1 Kinematical Model of the Upper Extremity
2.3.2.2 Kinetic Model of the Upper Extremity
2.3.3 Maximum Isometric Voluntary Moment
2.4 Experimental Procedure
2.5 Statistics
RESULT
3.1 Temporal-Spatial Characteristics
3.1.1 Temporal Parameters
3.1.2 Spatial Parameter
3.2 Kinematics of Wheelchair Propulsion
3.2.1 Movement Pattern
3.2.2 Range of Motion
3.3 Kinetics of Wheelchair Propulsion
3.3.1 Hand-rim Contact Force
3.3.2 Resultant Hand-rim Contact Force
3.3.3 Fraction Effective Force
3.3.3 Ma/total force
3.3.4 Joint Moment
3.3.5 Wheelchair Propulsion Strength Rating (WPSR)
3.3.6 Joint Power & Work
Discussion
4.1. Physical Characteristics
4.2 Temporal-Spatial Parameters
4.3 Joint Range of Motion
4.4 Kinetics
4.4.1 Hand-rim Contact Force
4.4.2 Joint Moment and WPSR
4.5 Joint Power & Work
4.6 General Discussion
Conclusion
Reference
1. Wu H. W. The biomechanics of upper extremity in wheelchair propulsion, Ph.D. Disseration, Institute of biomedical Engineering, National Cheng-Kung University, TAIWAN, 1998.
2. Chang C. C. The effect of seat positions on biomechanics of upper extremity. Master Thesis, Institute of biomedical Engineering, National Cheng-Kung University, TAIWAN, 1998.
3. David A. W. Biomechanics and motor control of human movement. 1990.
4. Nichols P. J., P. A. Norman. Wheelchair user''s shoulder? Shoulder pain in patients with spinal cord lesions. Scandinavian Journal of Rehabilitation Medicine. 11(1): 29-32, 1979.
5. Bayley J. C., Cochran T. P., Sledge C. B. The weight bearing shoulder: the impingement syndrome in paraplegics. J. Bone and Joint Surgery. (69): 676-678, 1987.
6. Gellman H., I. Sie. Late complications of the weight-bearing upper extremity in the paraplegic patient. Clinical Orthopaedics & Related Research. (233): 132-5, 1988.
7. Gellman H., Chander D. R., Petrasek J., Sie I., Adkins R., Walters R. L. Carpal tunnel syndrome in parapledic patients. J. Bone and Joint Surgery. 70(4): 517-519, 1988.
8. Sie I. H., Waters R. L., Adkins R. H., Gellman H. Upper extremity pain in the postrehabilitation spinal cord patient. Archives of Physical Medicine and Rehabilitation. (73): 44-48, 1992.
9. Jackson D. L. Hynninen B. C., Caborn D. N., McLean J. Electrodiagnostic study of carpal tunnel syndrome in wheelchair basketball players. Clinical Journal of Sport Medicine. 6(1): 27-31, 1996.
10. van der Linden M. L., L. Valent, Veeger H. E., van der Woude L. H. The effect of wheelchair handrim tube diameter on propulsion efficiency and force application (tube diameter and efficiency in wheelchairs). IEEE Transactions on Rehabilitation Engineering. 4(3): 123-32, 1996.
11. van der Woude L. H. V., Veeger H. E. J., Rozenclal R. H., Sargeant A. J. Seat height in handrim wheelchair propulsion. Rehabil Res Dev. 26(4): 31-50, 1989.
12. van der Woude L. H. V., Veeger H. E. J., Rozenclal R. H., Van Ingen Schenau G. J., Rooth F. Wheelchair racing: effects of rim diameter and speed on physiology and technique. Medicine & Science in Sports & Exercise. 20(5): 492-500, 1988.
13. Veeger H. E., van der Woude L. H. V., J., Rozendal R. H.: Effect of handrim velocity on mechanical efficiency in wheelchair propulsion. Medicine & Science in Sports & Exercise. 24: 100-107, 1992.
14. Bednarczyk J. H. and D. J. Sanderson. Limitations of kinematics in the assessment of wheelchair propulsion in adults and children with spinal cord injury. Physical Therapy. 75(4): 281-9, 1995.
15. Rudins A., Laskowski E. R., Growney E. S., Cahalan T. D., An K. N. Kinematics of the elbow during wheelchair propulsion: a comparsion of two wheelchairs and two stroking techniques. Archives of Physical Medicine & Rehabilitation. 78(11): 1204-10, 1997.
16. Bednarczyk J. H. and D. J. Sanderson. Kinematics of wheelchair propulsion in adults and children with spinal cord injury. Archives of Physical Medicine & Rehabilitation. 75(12): 1327-34, 1994.
17. Goosey V. L. Campbel, I. G. Symmetry of the elbow kinematics during racing wheelchair propulsion. Ergonomics, 41(12): 1810-20, 1998.
18. Rao S. S. Bontrager, E. L. Gronley, J. K. Newsam C. J. Perry J. Three-dimensional kinematics of wheelchair propulsion. IEEE Transactions of Rehabilitation Engineering. 4(3): 152-160, 1996.
19. Boninger M. L., R. A. Cooper. Three-dimensional pushrim forces during two speeds of wheelchair propulsion. American Journal of Physical Medicine & Rehabilitation. 76(5): 420-6, 1997.
20. Boninger M. L., R. A. Cooper, Robertson R. N., Rudy T. E. Wrist biomechanics during two speeds of wheelchair propulsion: an analysis using a local coordinate system. Archives of Physical Medicine & Rehabilitation. 78(4): 364-72, 1997.
21. Davis J. L., E. S. Growney. Three-dimensional kinematics of the shoulder complex during wheelchair propulsion: a technical report. Journal of Rehabilitation Research & Development. 35(1): 61-72, 1998.
22. Malone L. A., Gervais, P. L., Burnham, R. S., Chan, M., Miller, L., Steadward, R. D. An assessment of wrist splint and glove use on wheeling kinematics. Clinical Biomechanics. 13(3): 234-236, 1998.
23. Veeger H. E., Meershoek L. S. Van der Woude L. H., Langenhoff J. M. Wrist motion in handrim wheelchair propulsion. Journal of Rehabilitation Research & Development. 35(3): 305-13, 1998.
24. Shimada S. D., Robertson R. N., Bonninger M. L., Cooper R. A. Kinematic characterization of wheelchair propulsion. Journal of Rehabilitation Research & development. 35(2): 210-8, 1998.
25. Cooper R. A., R. N. Robertson. Methods for determining three-dimensional wheelchair pushrim forces and moments: a technical note. Journal of Rehabilitation Research & Development. 34(2): 162-70, 1997.
26. Dallmeijer A. J., L. H. van der Woude, et al. Effectiveness of force application in manual wheelchair propulsion in persons with spinal cord injuries. American Journal of Physical Medicine & Rehabilitation. 77(3): 213-21, 1998.
27. Van der Woude L. H., Van Koningsbruggen C. M., Kroes A. L., Kingma I. Effect of push handle height on net moments and forces on the musculoskeletal system during standardized wheelchair pushing tasks. Prosthetics & Orthotics. 19(3): 188-201, 1995.
28. Veeger H. E., Meershoek L. S., van der Woude L. H. Langenhoff J. M. Wrist motion in hand-rim wheelchair propulsion. Journal of Rehabilitation Research & Development. 35(3): 305-13, 1998.
29. Robertson R. N., Boninger M. L. Copper R. A., Shimada S.D. Pushrim forces and kinetics during wheelchair propulsion. Archives of Physical Medicine & Rehabilitation. 77(9): 856-864, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張英陣,「第三部門與社會福利政策分析」,社區發展季刊,第70期, 民國84年6月,頁144-159
2. 徐震,「社會福利的時代背景及其政策之形成」,社區發展季刊,第63期, 民國82年9月,頁49-54
3. 徐震,「社會福利的時代背景及其政策之形成」,社區發展季刊,第63期, 民國82年9月,頁49-54
4. 林萬億,「我國社會福利事業與研究的發展」,中國社會學刊,第15期,民國80年12月,頁74-119
5. 林萬億,「我國社會福利事業與研究的發展」,中國社會學刊,第15期,民國80年12月,頁74-119
6. 林勝義,「社會福利機構的經營管理」,社會福利,第118期, 民國84年6月,頁39-42
7. 林勝義,「社會福利機構的經營管理」,社會福利,第118期, 民國84年6月,頁39-42
8. 許博雄,「福利需求意識類型與意向模式: 以台北市的調查研究為例」,中國社會學刊,第18期, 民國84年12月,頁153-192
9. 許博雄,「福利需求意識類型與意向模式: 以台北市的調查研究為例」,中國社會學刊,第18期, 民國84年12月,頁153-192
10. 陳金貴,「美國非營利組織的研究」,美歐月刊,第11卷第6期,民國85年6月,100-119頁
11. 顧忠華,「社會變遷下政府角色的調整」,研考雙月刊,第20卷第6期,民國85年12月,16-21頁
12. 顧忠華,「社會變遷下政府角色的調整」,研考雙月刊,第20卷第6期,民國85年12月,16-21頁
13. 嚴慧玲,「基金會企業化經營面貌翻新」,戰略生產力雜誌,第4期民國80年4月,頁112-118
14. 嚴慧玲,「基金會企業化經營面貌翻新」,戰略生產力雜誌,第4期民國80年4月,頁112-118
15. 蔡啟源、陳秋蓉,「企業附設社會福利事業基金會之組織結構與組織績效之探討」,社區發展季刊,第70期, 民國84年6月,頁245-258