(54.236.58.220) 您好!臺灣時間:2021/02/27 12:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳翠焄
研究生(外文):Tsui-Hsun Wu
論文名稱:石英晶體微天平於含抗凝固劑血液凝固時間之研究
論文名稱(外文):A coagulation time study for blood containing anticoagulant by quartz crystal microbalance seneor
指導教授:張憲彰
指導教授(外文):Hsien-Chang Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:59
中文關鍵詞:石英晶體微天平光學法OC動態血液凝固時間ACT肝素活化部分凝血活酶時間aPTT
外文關鍵詞:quartz crystal microbalanceoptical coagulometry (OC)actived clotting time (ACT)heparinactivated partyial thromboplastin time (aPTT)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:419
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究是以自行發展的石英晶體微天平系統(QCM)藉著其對受測物因重量、黏滯度、黏彈性的改變而造成石英晶體振盪頻率隨之改變的高靈敏偵測能力,做為生物感測的工具。在本研究中以含抗凝劑(heparin)血液的血液凝固學檢測為主體的分析研究,以在晶片電極上血液的凝固時間變化展開一系列的探討。
首先進行活化部分凝血活酶時間(aPTT)的測定,確定血液凝固時間測定實驗的可行性之後,針對各醫院及研究單位所使用商品化的光學式(OC)凝固測定儀(coagulometer),以實際的檢體量測建立這兩種不同方法之相關性,結果證明QCM相對於OC的線性相關性高達90%以上。俟石英晶體微天平的可信賴度建立之後,再針對手術室所使用的凝血測定儀HEMOCHROM 800檢測活化血液凝固時間(ACT),建立兩者的相關性,在此方面線性相關性亦分別表現在90%以上,確定QCM系統功能的全血樣本、高計量肝素應用範圍。
在確定本石英晶體系統的功能之後,根據檢體所含不同劑量的heparin,分別以OC、HEMOCHROM 800、QCM三種不同的檢測法,證明在含高劑量的heparin(> 1 unit/ml)檢體時,OC系統無法偵測到其凝固時間的變化,而QCM、HEMOCHROM 800均可偵測到其血液凝固變化的時間。
在檢體的需求上,在OC系統的檢測上至少需要100 l的血漿才能偵測到凝固時間的變化;ACT偵測所需的檢體至少需要2 ml的全血,但是QCM系統在檢體的需求上只需要20~50 l,且同一套系統能偵測全血及血漿,除此之外,在整個實驗過程中,可以在訊號擷取系統上,藉由及時(real time)監測晶體頻率的改變得知血液凝固過程中動態變化。
我們可更進一步藉此系統的偵測功能,來預測當臨床上病人注射heparin之後,在病人血液內作用的heparin濃度。更積極性的意義是,在病人使用heparin之前,我們藉由體外試驗(in vitro)的方式,外加heparin來作病人的檢量線,預測需要給予病人多少劑量的heparin,除了降低併發症發生的機率之外,亦可減少heparin的給予量。
The quartz crystal microbalance(QCM) is an electromechanical transducer, coverts electric into mechanical energy by piezoelectric effect. It has been employed for thickness monitoring in vacuum deposition system, and widely used in gas or liquid phase biosensing field.In this study, we have constructed a QCM system. It can be used as analytical tool for monitoring the change on the solid-liquid interface based on its high sensitivity to liquid mass, density, viscosity. This major topic of this study is hemoatologic investigation of whole blood contain anticoagent.
Primary, the feasibility of QCM system had been confirmed by the investigation of the activated partyial thromboplastin time (aPTT) in this experiment. Furthermore, it was investegated that a relationship between QCM system and commodities optical coagulometry (OC). The results showed that whole blood clotting time obtained with QCM system have good linear relationship for heparin concentricity from 0 to 1.0 unit/ml and agree with plasma aPTT results with optical coagulometry. The aPTT and the actived clotting time (ACT) are most widely used to monitor heparin effect. In high concentration (>1 unit/ml) of heparin, both QCM and ACT could be effectively utilized for determination of clotting time but OC are not sufficient for this hemoatologic analysis.
One hundred micro-liter of plasma and 2ml of whole blood are required for determination of coagulation time by an OC system and of ACT by a ACT coagulometry, respectively. However, only a few tenth micro-liter of specimen is required for the same coagulation analysis by QCM system with whole blood and plasma. Moreover, we can real-time monitor the dynamic changes of blood coagulation according to oscillation frequency of crystal by the signal acquisition system in experiment process.
In this research, the heparin concentration on patient could be monitored by QCM. The QCM can be used to predict heparin concentration in patient for post-surgical or pre-surgical conditions by in vitro analysis for declining the risk of heparin therapy.
中文摘要--------------------------------------------------I
英文摘要-------------------------------------------------II
誌謝----------------------------------------------------III
表目錄---------------------------------------------------IV
圖目錄----------------------------------------------------V
第一章 緒論
1.1研究背景------------------------------------------------01
1.1.1 生物感測器簡介----------------------========------01
1.1.2 壓電石英晶體感測器之發展壓------------------------01
1.1.3電石英晶體感測器於血液凝固測試研究回顧-------------01
1.2血液學凝固原理------------------------------------------06
1.2.1 血液凝固學理論------------------------------------06
1.2.2 凝血作用程序-----------------------------------------07
1.3臨床各種血液凝固時間的量測及其意義----------------------09
1.3.1凝血時間-------------------------------------------09
1.3.2凝血酶原時間---------------------------------------09
1.3.3活化部分凝血活酶時間-------------------------------10
1.4肝素抗凝固作用之原理------------------------------------12
1.4.1作用模式-------------------------------------------12
1.4.2用藥指示-------------------------------------------14
1.4.3給藥和實驗室監控-----------------------------------14
1.4.4副作用---------------------------------------------14
1.4.5臨床使用狀況---------------------------------------15
1.5血液凝固學檢測方法--------------------------------------17
1.5.1凝固法原理-----------------------------------------17
1.5.2光學檢測法原理-------------------------------------17
1.5.3凝血測試儀-----------------------------------------19
1.6研究目的及研究架構圖------------------------------------20
第二章 實驗設備與方法
2.1檢測設備及原理------------------------------------------22
2.1.1壓電石英晶體微天平應用原理-------------------------22
2.1.2壓電效應-------------------------------------------23
2.1.3 振盪電路------------------------------------------24
2.1.4 影響理想特性之因素--------------------------------25
2.2材料設備------------------------------------------------27
2.2.1設備-----------------------------------------------27
2.2.2 試劑與藥品----------------------------------------28
2.2.3 檢體之來源與取得----------------------------------28
2.3硬體架構------------------------------------------------29
2.4訊號截取系統--------------------------------------------30
2.5分析系統------------------------------------------------31
2.6實驗操作步驟--------------------------------------------32
2.6.1石英晶體微天平法-----------------------------------32
2.6.2 光學式凝固測定儀----------------------------------33
2.6.3 凝血測定儀(HEMOCHROM800)檢測ACT操作步驟---------34
第三章 結果與討論
3.1 石英晶體微天平與其對血液凝固的響應特徵-----------------35
3.1.1 測試環境因素的考量-------------------------------35
3.1.2 血液凝固反應之石英晶體振盪響應之分析-------------38
3.2 石英晶體微天平(QCM)於aPTT量測可行性之確立------------41
3.2.1 QCM與OC在血漿之aPTT偵測的表現--------------------41
3.2.2 QCM系統在全血與血漿之aPTT量測--------------------42
3.2.3 以QCM之aPTT與凝血測定儀之ACT檢測的比較-----------43
3.3 石英晶體微天平系統在heparin劑量檢測之功能評估與其臨床應用
上的考量-----------------------------------------------44
3.3.1 石英晶體微天平與光學式凝固分析儀功能的比較-----------44
3.3.2 石英晶體微天平於高劑量heparin分析--------------------45
3.3.3 性別差異與heparin高低劑量對血液凝固功能的影響--------50
3.3.4 Heparin劑量的預測------------------------------------52
第四章 結論-----------------------------------------------54
第五章 參考文獻 ------------------------------------------56
表目錄
表1:血液中各種凝固因子及其作用-----------------------------8
表2:以QCM系統及凝血測定儀(ACT)對含不同濃度heparin的檢體
作體外凝集時間測試結果相關性探討----------------------41
表3:QCM法相對於OC法所做之aPTT線性關係比較---------------44
表4:比較heparin對QCM、OC系統所檢測出aPTT的反應關係------47
表5:以光學凝固測試儀檢測低劑量heparin所表現的性別差異-----49
表6:高濃度heparin之臨床檢體檢測---------------------------51
圖目錄
圖1.1 生化感測器結構示意圖----------------------------------3
圖1.2 壓電石英晶體不同的結構--------------------------------4
圖1.3 凝固作用流程圖----------------------------------------7
圖1.4 凝血脢原時間試驗反應----------------------------------11
圖1.5 aPTT部分凝血脢試驗時間反應圖-------------------------11
圖1.6 heparin therapy 4-6小時後aPTT分布圖-----------------14
圖1.7 heparin作用圖----------------------------------------15
圖1.8 凝血測試儀--------------------------------------------17
圖1.9 凝血時間測驗及方法圖----------------------------------18
圖1.10 光學凝固測定儀---------------------------------------18
圖1.11 實驗研究理論及架構圖---------------------------------20
圖2.1 石英晶片示意圖--------------------------------------- 21
圖2.2 石英晶體型態結構--------------------------------------22
圖2.3 各種不同角度切割型態之晶片----------------------------22
圖2.4 不同角度的石英晶片對溫度的振盪頻率響應----------------23
圖2.5 石英晶體微天平振盪電路圖------------------------------24
圖2.6 石英晶體微天平之靈敏度分佈圖--------------------------25
圖2.7 HP VEE操作面板---------------------------------------28
圖2.8 軟硬體組合程式----------------------------------------28
圖2.9分析系統操作面板--------------------------------------29
圖2.10 QCM實驗操作流程圖-----------------------------------30
圖2.11 光學法量測aPTT操作程序------------------------------31
圖2.12 ACT測定方法實驗操作步驟示意圖-----------------------32
圖3.1 不同濕度對石英晶片振盪頻率的影響----------------------35
圖3.2 石英晶體振盪頻率響應圖--------------------------------38
圖3.3 全血及血漿於石英晶片之響應----------------------------38
圖3.4 QCM系統與OC之線性比較-------------------------------44
圖3.5 QCM系統相對OC系統之相關性比較-----------------------45
圖3.6 QCM系統與OC系統對不同濃度heparin的反應-------------46
[1] P. R. Coulet, What is a biosensor. In: biosensor principles
and applications. (L. J. Blum and P. R. Coulet, Eds),
Marcel Dekker, New York, 1991.
[2] L. C. Jr. Clark, and C. Lyons, “Electrode system for
continuous monitoring in cardiovascular surgery”, Ann. NY
Acad. Sci., 102:29, 1962
[3] G. G. Guilbault, and J. Montalov, “A urea specific enzyme
electrode”, J. Am. Chem. Soc., 91:2164, 1969.
[4] P. L. Konash, and G. J. Bastians, “Piezoelectric crystal
as dectors in liquid chromatography”, Anal. Chem.,
52:1929,1980.
[5] T. Normura, “Single-drop method for determination of
cyanide in solution with a piezoelectric quartz crystal”,
Anal. Chim. Acta., 124:81, 1981.
[6] T. Nomura, F. Tanaka, T. Ymada, and Itoh, H., “
Electrodeless piezoelectric quartz crystal and its behavior
in solution”, Anal. Chim. Acta, 243:273, 1991.
[7] Muramatsu, H., Tamiya, E., Suzuki, M.  Karube, I.(1989).
“Quart-Crystal Gelation Detector for the Determination of
Fibrinogen Concentration”, Anal. Chim. Acta, 321:326, 1989.
[8] H. Muramatsu, H., T. Ataka, R. Homma, Y. Miura,  I.
Karube, “A Quartz Crystal Viscosity Sensor for Monitoring
Coagulating Reaction and its Application to a Multichannel
Coagulation Detector”, Biosensors and Bioelettronics,6,
353:358, 1991.
[9] Si. S.,Zhou T., Liu D., Nie L.,  Yao S., “Using
Piezoelectric Quartz Crystal to Study Hemorheological
Phenomena: Blood Clotting and Urokinase Activated
Fibrinolysis”, Analytical Letter, 27,2027-2037, 1994.
[10] Si, S., Shen, D., Nie L.,  Yao S. “Impedance Study of
Erythrocyte Aggregation and Sedimentation by Piezoelectric
Crystal Sensor”, Bioeletrochemistry and Bioenergetics, 36,
161:164, 1995.
[11] T. —J. Cheng, H. —C. Chang, T. —m. Lin, “A
Piezoelectric Quartz Crystal Sensor for the Determination
of Coagulation Time in Plasma and Whole Blood”,
Biosensors  Bioelectronics,13, 147:156, 1998.
[12] 何敏夫編,血液學,合記出版社,台北,414:458,1994.
[13] 原著:David Robertson M.D. Craig R. Smith M.D.許永間編譯,
臨床藥理學,合記出版社,台北,186:188, 1984.
[14] 許宏基,林鴻德合譯,血液學概要.合記出版社,台北,337 ,1986.
[15] Jean M. Thomson, “Blood Coagulation and Haemostasis”,
Produced by Longman Sigapore Publishers Pte. Ltd.
[16] M. S. Hulin, DVM, T. W. Wakefield, ”A novel protamine
variant reversal of heparin antucoagulation in human blood
in vitro”, Journal of vascular surgery, 1043:1048, 1997.
[17] 何敏夫編,血液學,合記出版社,台北,506:507,1994.
[18] P. Klement, P. Liao, J. Hirsh, “Hirudin causes more
bleeding than heparin in a rabbit ear bleebing model”, J.
Lab Clin Med, 132, 181:185,1998.
[19] B. J., Warn-Cramer, Steven L. Maki, S. I. Rapaport,
“Heparin-Releasable and Platele Pools of Tissue Factor
Pathway Inhibitor in Rabbits”, Thrombosis and Haemosis,
69, 221:226, 1993.
[20] J. Jesty, Ann Lorenz, Jose Rodrigued. Tzze-Chein Wun,
“Initiation of the Tissue Factor Pathway of Coagulation in
the Presence of Heparin: Control by Antithrombin III and
Tissue Factor Pathway Inhibitor”, J. Blood, vol. 87,
pp230-2307, 1996.
[21] G. J. Despotis, C .W. Hogue, S. A. Santoro, “ Effect of
heparin on whole blood activated partial thromboplastin
time using a portable, whole blood coagulation monitor”,
Critical Care Medicine, vol. 23, pp1674-1679, 1995.
[22] R. H. Whit, Hong Zhou, Linda Woo, Dennis Mungall, “
Effect of Weight, Sex, Age, Clinical Diagnosis, and
Thromboplastin Reagent on Steady-stat Intravenous Heparin
Requirements”, Arch Intern Med., vol. 157, pp2468-2469,
1997.
[23] P. M. Sandset, “ Tissue factor pathway inhibitor (TFBI)-
An update”, Hemostasis, vol. 26, pp154-165, 1996.
[24] Scialla SJ, “Heparin monitoring by activated partial
thromboplastin time. Comparison of ex vivo measurement and
in vitro standardization.” Am J Clin Pathol. 84(3), 351-
354, 1985.
[25] Kitchen S, Jennings I, Woods TA, Preston FE, “Wide
variability in the sensitivity of APTT reagents for
monitoring of heparin dosage.” J. Clin Pathol, 49(1), 10-
14, 1996.
[26] Brill-Edwards P, Ginsberg JS, Johnston M, Hirsh J, “
Establishing a therapeutic range for heparin therapy.” Ann
Intern Med , 119(2), 104-109, 1993.
[27] Jeffrey I. Weitz, “ Low-Molecular-weight heparins” The
new england Journal of Medicine, vol. 337, pp688-698,
1997.
[28] N. R. C. Campbell, R. D. Hull, R. Brant, “ Different
effects of heparin in males and females”, Clin Invest
Med., vol. 21, pp71-77, 1998.
[29] 何敏夫編,血液學,合記出版社,台北,pp433,1994.
[30] G. Elgue, M. Blomback, P. Olsson, J. Riesenfeld, “ On the
mechanism of Coagulation inhibition on surfaces with end
point immobilized heparin”, Thrombosis and Haemosis, vol.
70, pp269-293, 1993.
[31] T. Ozawa, J. Domagalski, B. S., “ Determination of low-
molecular- Weight heparin by heptest on the automated
coagulation laboratory system”, Coagulation and
Transfusion Medicine, vol. 99, pp157-159, 1993.
[32] S. Liu, F. Zhou, M. Hook, D. D. Carson, “ A heparin-
binding synthetic peptid of heparin/heparan sulfate-
interacting portein modulates blood coagulation
activities”, Proc. Natl. Acad. Sci. USA, vol. 94, pp1739-
1744, 1997.
[33] S. D, G. M. Deeb, C. Yann, BS, A. H. Schmaier, “
Intraoperative monitoring of danaparoid sodium
anticoagulation during cardiovascular operations” Journal
of Vascular Surgery, vol. 27, pp568-575,1998.
[34] H. M. Solomon, R. E. Mullins, P. Lyden, “ The Diagnostic
Accuracy of Bedside and Laboratory Coagulation: Proceures
Used To Monitor the Anticoagulation Status of Patients
Treated With Heparin”, Coagulation and Transfusion
Medicine, vol. 109, pp371-378, 1998.
[35] K.K.Kanazawa and J. G. Gordan II, “The oscillation
frequency of a quartz resonator in contact with a liquid”,
Anal. Chim. Acta, vol. 175,pp99-105, 1985.
[36] S. T. Martin, g. C. Frye, A. J. Recco, and S. D. Senturia,
“ Effect of Surface Roughness on the Respones of Thickness-
Shear Mode Resonators in Liquids”, Anal. Chem., vol. 65,
pp2910-2922, 1993.
[37] D. M. Ullevig, J. F. Evans, and M. G. Albrecht, “ Effects
of Stressed Materils on the Radial Sensitivity Function of
a Quartz Crystal Microbalance”, Anal. Chem., vol.54,pp2341-
2343, 1982.
[38] 鄭宗記, 石英晶體微天平研製與其在生化感測功能應用上之開發”
碩士論文, 1994.
[39] William B. Hillegass, Brigitta C. Brott, Eric B. Haura,
“Patient-specific heparin dosing during angioplasty.”JACC,
391A, 1017-71, 1995.
[40] Craig p. Juergens, MBBS, Christopher Semsarian, Anthony C.
Keech, “ Hemorrhagic Complications of intravenous heparin
Use.” Am. J Cardiol, 80, 150-154, 1997.
[41] Alexander T. Cohen, Mario B. Wagner, Mohamed S. Mohamed,
“ Risk factors for bleeding in major abdominal surdery
using heparin thromboprophylaxis.” The american journal
of surgery, vol. 174, 1-5, 1997.
[42] Hamamoto, T. Kisiel, W. “ Full-length human tissue factor
pathway inhibitor inhibits human activated protein C in the
presence of heparin.” Thrombosis Research, vol 80, pp. 291-
297, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔