(3.235.108.188) 您好!臺灣時間:2021/02/28 00:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏建忠
研究生(外文):Chien-Chung Yen
論文名稱:極深覆岩下隧道之岩石力學問題
論文名稱(外文):A Study on the Mechanical Properties, Temperature, and Stresses of Rock Near a Deep Tunnel
指導教授:潘以文潘以文引用關係
指導教授(外文):Yii-Wen Pan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:144
中文關鍵詞:岩石力學性質高溫高壓隧道地溫梯度熱應力三軸試驗
外文關鍵詞:mechanical properties of rockhigh temperature and high pressuretunnelgeothermal gradientthermal stresstriaxial testFLAC
相關次數:
  • 被引用被引用:6
  • 點閱點閱:164
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近代許多岩石工程均可能涉及極深之覆岩狀況,隨著地下工程深度愈來愈深,工程中可能遭遇到的岩壓與岩溫也隨之上升。因此本研究擬探討在溫度與壓力升高下岩石之力學性質,與深覆岩隧道受地溫影響下岩體與噴凝土襯砌所導致之熱應力做一初步探討。
本研究對台灣東部蘇花段所鑽取之板岩與大理岩岩樣進行一系列控制溫度與壓力之三軸試驗以模擬現地岩石在可能遭遇之岩壓與岩溫下之力學性質。試驗結果顯示在100℃溫度範圍內板岩與大理岩均呈現脆性力學行為。以溫度對岩石力學性質之影響來看,試體受本身性質的隨機差異影響較溫度因素來的大。然而整體而言,圍壓增加會增強岩石強度,溫度增加則使岩石強度有降低之趨勢。由試驗中並且求得板岩與大理岩之熱膨脹係數約在4~9×10-5(1/℃)之間。
此外,本研究以有限差分程式FLAC來模擬深覆岩隧道因通風降溫而導致之溫度場分佈及隧道周圍岩體與噴凝土襯砌所受之熱應力。由分析結果來看在受地溫影響下之深覆岩隧道,在開挖通風後大約需56小時岩體溫度可重新達到平衡狀態。
隧道通風降溫對開挖面附近岩體而言極可能因此使張力破壞範圍增加,而噴凝土在硬化後所產生之熱應力在深覆岩狀況下可能影響不大。
Engineering projects of deep tunnels may involve site conditions of a large overburden. As the overburden depth increases, both the temperature and pressure tend to elevate. This research aims to (1) study the mechanical properties of rock at elevated pressure and temperature, and (2) to explore the approach for estimating the temperature and stress distribution in rock mass near an excavated tunnel before and after ventilation.
The study carried out a series triaxial compression tests on specimens of slate and marble at elevated temperatures and confining pressures (5~40MPa). The results of these tests indicate that (1) these specimens exhibit brittle behavior at elevated temperature range from 25~100℃; (2) the influence of the random variation and disturbance of the sample is greater than the influence of temperature (range: 25~100℃). In general, the rock strength increases with increasing confining pressure, and decreases with increasing temperature. The thermal expansion coefficient of the specimens lies within 4~9×10-5(1/℃) .
The study makes use of the numerical methods to study the temperature and stress distribution in rock mass near an excavated tunnel before and after ventilation. First, the initial distribution of temperature around a tunnel is estimated on the basis of steady-state thermal analysis. Ventilation following an excavation is then modeled by specifying temperature boundary conditions along the tunnel surface. Distribution of temperature and stress-state near the excavated tunnel is calculated and analyzed. From the result of the numerical study, the following is found. In principle, the ventilation may result in higher overall unstability of the rock-mass near the excavated tunnel. Condition of tensile failure due to thermal stress in the rock-mass near the excavation face is possible. The calculated result shows that the thermal stress in the shotcrete is not very significant.
中文摘要Ⅰ
英文摘要Ⅱ
誌謝Ⅲ
目錄Ⅳ
圖目錄Ⅶ
表目錄ⅩⅢ
第一章 緒論1
1.1 前言1
1.2 研究內容2
第二章 文獻回顧3
2.1 溫度與壓力對岩石力學性質之影響3
2.1.1 圍壓與溫度對極限壓縮強度之影響3
2.1.2 圍壓與溫度對彈性模數之影響4
2.1.3 圍壓與溫度對柏松比之影響5
2.2 體積膨脹係數5
2.3高溫下噴凝土之力學性質6
2.3.1 溫度對混凝土強度的影響6
2.3.2 溫度對混凝土彈性模數的影響8
2.4深覆岩隧道受溫度與開挖之影響8
2.4.1 深覆岩層中之地溫推估8
2.4.2 深覆岩層中隧道力學行為12
2.5地下開挖之岩體熱應力相關研究14
第三章 試驗方法與計畫40
3.1 三軸壓力試驗儀器40
3.1.1 高溫高壓三軸試驗系統40
3.1.2 TestStar控制軟體43
3.2 試體來源與試體製作43
3.3 試體之安裝44
3.4 試驗方法44
3.5 試驗計畫46
第四章 試驗結果51
4.1 灰色板岩在溫度與壓力升高下之三
軸試驗結果51
4.2 白色大理岩在溫度升高下之三軸試
驗結果75
第五章 試驗結果分析與討論86
5.1溫度/壓力對軸差應力與軸應變曲線
之影響86
5.1.1溫度的影響86
5.1.2壓力的影響87
5.2溫度/壓力對力學性質的影響87
5.2.1溫度/壓力對強度的影響87
5.2.2摩爾-庫倫破壞包絡線88
5.2.3溫度/壓力對勁度的影響88
5.2.4溫度/壓力與變形性之關係89
5.2.5溫度/壓力與柏松比之關係89
5.3 板岩、大理岩、玄武岩與變質石英 砂岩之熱膨脹性質91
第六章 深覆岩層隧道與噴凝土
支撐熱應力之數值模擬111
6.1 前言111
6.2分析概念112
6.3分析架構與方法113
6.4 熱傳導類比模組之驗證114
6.5.1 數值模式之基本假設116
6.5.2 材料參數選用之依據116
6.5.3 虛擬案例條件說明118
6.5.3.1 岩體與支撐參數119
6.5.3.2 網格與邊界條件120
6.5.4 分析結果與討論120
6.5.4.1 溫度邊界範圍之影響120
6.5.4.2 溫度場變化120
6.5.4.3 岩體與噴凝土襯砌之熱應力121
6.5.4.4 塑性區變化122
6.5.4.5 討論……………………………………………...122
第七章 結論與建議138
7.1 結論138
7.2 建議140
參考文獻141
參考文獻
1. 中華顧問工程司,地熱對工程施工之影響及其對策研究報告,1997。
2. 李耀武,脆性岩石在高溫/高壓下之力學性質,國立交通大學土木工程研究所碩士論文,1994。
3. 王俊明,高溫下脆性岩石之力學與物理性質,國立交通大學土木工程研究所碩士論文,1995。
4. 吳博凱,岩樣熱傳導試驗及深岩層地溫推估模式,國立交通大學土木工程學研究所碩士論文,1996。
5. 洪如江等人,現代隧道工程技術之研究,台灣營建研究中心工作報告,1993。
6. 潘以文、廖志中等人,台灣地區岩體品質分類與隧道支撐設計適用性之初步檢討評估,交通部台灣區國道新建工程局研究報告,1996。
7. 段品莊譯,隧道工程(上),1981 。
8. Aversa,S. & Evangelista, A., Thermal Expansion of Neapolitan Yellow Tuff. , Rock Mech. Rock Eng. Vol. 26, No. 4, pp. 281-306,1993.
9. Althaus, E., Friz-Topfer, A., Lempp, Ch., and Natau , O., Effect of Water on Strength and Failure Mode of Coarse-Grained Granites at 300℃, Rock Mech. Rock Eng. ,Vol. 27, No. 1, pp. 1-21,1994.
10. Boley, B. A. & Weiner, J. H. , Theory of Thermal Stresses, Wiley, New York,1960.
11. Clark, S. j. & Jr(editor)., Handbook of Physical Constants. Geological Society of America , New York , Memoir 97,1966.
12. Carette, G. G., Painter, K. E., and Malhotra, V. M., "Sustained High Temperature Effect on Concrete Made with Normal Portland Cement, Normal Porland Cement and Slag, or Normal Cement and Fly Ash", Concrete International, Vol. 4 , No. 7,pp 41-51, 1982.
13. Carette, G. G. and Malhotra, V. M. , Performance of Dolostone and Limestone Concretes at Sustained High Temperature, Temperature Effects on Concrete, ASTM STP 858 ,pp 38-67 , 1985.
14. Desai, C. S. & Abel, J. F., Introduction to the Finite Element Method, Van Nostrand-Reinhold, New York, 1972.
15. Goy, L., Fabre, D. and Menard, G., Modelling of Rock Temperatures for Deep Alpine Tunnel Projects, Rock Mech. Rock Engng., Vol. 29,No. 1,pp 1-18,1996.
16. Griggs, D. T., Turner, F. J. and Heard, H. C., Deformation of rocks at 500 to 800℃., Geol. Soc. Am. Mem. 70,1960,pp. 30-104.
17. Heuze, F. E., High-temperature mechanical,physical;and thermal properties of granitic rocks, Int. J. Rock Mech. Min. Sci. & Geomech. Abs. Vol. 20 no. 1, pp.3-10,1983.
18. Hoek, E. & Brown, E. T. , Underground excavations in rock,1980.
19. Hoek, E., Kaiser, P. K. & Bawden, W. F. , Support of underground excavations in hard rock, A. A. Balkema,1995.
20. Homand-Etienne, F. & Houpert, R., Thermally induced microcracking in granites characterization and analysis., Int. J. Rock Mech. Min. Sci. &Geomech. Abstr. Vol. 26, 2, pp. 125-134, 1989.
21. Jaeger, C., Rock Mechanics and Engineering, 2nd Ed., Cambridge Univ. Press, 1979.
22. Jumikis, A. R. , Rock Mechanics , 2nd Ed. , 1983 .
23. Kumar, P. and Singh, B., Design of Reinforced Concrete Lining in Pressure Tunnels, Considering Thermal Effects and Jointed Rockmass, Tunnelling and Underground Space Technology , Vol. 5, No. 1-2, pp. 91-101, 1990.
24. Kumar, P. and Singh, B., Thermal Stress Analysis of Underground Openings, International Journal for Numerical and Analysis Method in Geomechanics, Vol. 13,pp 411-425, 1989.
25. Kumar, P. and Singh, B., Pressure on lining due to initial stress field by finite-infinite-interface element method, Rock Mech. Rock Engng. Vol. 21,pp 219-228,1988.
26. Lama, R. D. et al., Handbook on Mechanical Properties of Rocks, Vol. 1 ,1st Ed.,Trans Tech Publications,1974.
27. Lo, K. Y., Wai, R. S. C., Thermal expansion, diffusivity, and cracking of rock cores from Darlington,Ontario. Can. Geotech. J., vol. 19, pp154-166,1982.
28. Neville, A. M., Properties of concrete, 4Ed., p385-388,1995.
29. Fechtig, R. , Application of Shotcrete on Hot Rock Surface, Shotcrete for underground support Ⅶ, Proceedings of the Engineering Foundation Conference,ASCE ,New York, pp. 235-244,1995.
30. Goodman, R. E., Introduction to Rock Mechanics, 2nd Ed., Wiley, 1989.
31. Rehbinder, G., Stresses and Strains Around a Heated Spherical Cavity in an Elastic Medium, Rock Mech. Rock Engng. Vol. 18,pp 213-218,1985.
32. Rybach, L. and Pfister, M. , Temperature Predictions and Predictive Temperature in Deep Tunnels , Rock Mech. Rock Engng. Vol. 27 No. 2 , pp 77-88 , 1994.
33. Senseny, P. E., Determination of a constitutive law for salt at elevated temperature and pressure. Measurement of rock properties at elevated pressure and temperatures, Ed. by Pincus & Hoskins, ASTM STP 869, pp. 55-71,1985.
34. Swan, G., The mechanical properties of stripa-granite. Lawrence Barkeley Lab., LBL-7074,1972.
35. Tullis, J. & Yund, R. A., Experimential deformation of dry Westerly granite. J. Geophys. Res. 82 , pp. 5705-5718,1977.
36. Wai, R. S. C., Lo, K. Y. and Rowe, R. K., Thermal Stress Analysis in Rock with Nonlinear Properties, J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 19, pp211-220,1982.
37. Zienkiewicz, O. C., The Finite Element Method, 3rd edn. McGraw-Hill, London , 1977 .
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔