跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭泰中
研究生(外文):Tai-Chang Shiau
論文名稱:中華二、三號衛星軌道測定之誤差分析
論文名稱(外文):Error analysis of ROCSAT-2 and ROCSAT-3 orbits
指導教授:黃金維黃金維引用關係
指導教授(外文):Cheinway Hwang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:102
中文關鍵詞:中華衛星誤差分析Kaula的解析軌道理論地位模式模擬觀測資料
外文關鍵詞:ROCSATerror analysisKaula''s linear orbit theorygeopotential modelsimulated tracking data
相關次數:
  • 被引用被引用:3
  • 點閱點閱:393
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:1
本研究以中華二、三號衛星的模擬觀測資料求解衛星軌道,用以分析軌道因初始狀態向量與各種擾動力模式所引起的誤差。實驗時,給定台灣追蹤站觀測資料中S波段的精度為0.16cm/sec、SLR精度為1cm,則:(1)只使用S波段觀測時,由於初始狀態向量所引起的誤差,對二號及三號400公里與800公里兩個高度時期的誤差量分別為4.11公尺、14.12公尺及5.42公尺。(2)S波段與SLR同時觀測時,則誤差量分別為33公分、92公分與6公分。而擾動力模式部分則根據Kaula(1966)的解析理論以EGM96球諧係數求解地位模式引起的誤差,二號的誤差量為0.56公尺。而三號400公里與800公里兩個高度期間,誤差量則分別為64.09公尺與1.69公尺。其他擾動力則以數值方式分析,假設固體潮、海潮、太陽輻射與空氣阻力等模式中分別有10%的相對誤差量,分別積分二號與三號兩個高度期間的軌道,則得到此四項擾動力模式對於衛星軌道一天的總誤差量分別為1.05公尺、211.06公尺與2.8公尺。如果具有全球的衛星追蹤資料可供利用,則藉由調整擾動力模式與經驗參數,可將誤差量降低至公尺等級,因此對於中華衛星系列未來高精度定軌的需求,本文強烈建議應於中華衛星系列上加裝反射稜鏡,並且於台灣設置一SLR追蹤站,以提高整體定軌精度。
In this study, we generate simulated tracking data of ROCSAT-2 and ROCSAT-3, which are then used to compute their orbits. The accuracies of such orbits due to errors in the initial state vectors and force models are assessed. Given noises of 0.16 cm/sec and 1 cm for S-band range rates and SLR ranges at tracking stations in Taiwan, the orbit errors due to initial state vectors for ROCSAT-2, ROCSAT-3 (400km) and ROCSAT-3 (800km) are (1) 4.11m, 14.12m and 5.42m, if only S-band is used (2) 33cm, 92cm and 6cm, if S-band and SLR are used. The orbit errors due to the EGM96 geopotential model for ROCSAT-2, ROCSAT-3 (400km) and ROCSAT-3 (800km) are 0.56m, 64.09m and 1.69m, which are derived from Kaula''s linear orbit theory. Assuming a 10% model error in solid earth tide, ocean tide, solar radiation and air drag, the resulting orbit errors for ROCSAT-2, ROCSAT-3 (400km) and ROCSAT-3 (800km) are 1.05m, 211.06m, and 2.8m. If global tracking data are available, these errors can be reduced to meter level by modeling selected perturbing forces and empirical parameters. A SLR station in Taiwan and onboard SLR reflectors are highly recommended for precision orbit determinations of future ROC satellites.
中文摘要I
英文摘要II
致 謝III
目 錄IV
圖 目 錄VI
表 目 錄IX
第一章 前言1
1-1研究動機與目的1
1-2研究方法2
1-3論文架構2
第二章 衛星運動理論及定軌問題4
2-1二體問題4
2-2衛星擾動運動7
2-2-1地球引力位擾動7
2-2-2固體潮9
2-2-3海潮9
2-2-4空氣阻力10
2-2-5太陽輻射壓11
2-2-6地球輻射壓力11
2-3定軌問題12
第三章 遙傳追蹤指令站座標測定14
3-1GPS參考點座標測定14
3-2遙傳指令站之平面座標推求20
3-3遙傳指令站之橢球高推算24
第四章 以追蹤資料計算軌道及初始狀態向量所引起之軌道誤差26
4-1模擬方式簡介26
4-2由不同觀測資料推求三號衛星高度400km期間之初始狀態向量誤差情形27
4-3由不同觀測資料推求三號衛星高度800km期間之初始狀態向量誤差情形40
4-4綜合分析比較51
第五章 地位模式引起之軌道誤差53
5-1地球引力位擾動之克卜勒函數53
5-2Lagrange''s運動方程及近似解54
5-3徑向、沿軌跡、橫向軌道擾動56
5-3-1偏心率甚小(e≦0.01)之擾動公式60
5-4由地位球諧係數誤差引起之軌道誤差61
5-5利用地位球諧係數誤差傳播推算二、三號衛星之軌道誤差62
5-5-1地位模式與階數之選定62
5-5-2共振現象64
5-5-3軌道誤差64
第六章 其他擾動力模式引起之軌道誤差76
6-1固體潮引起的軌道誤差76
6-1-1固體潮引起的軌道誤差76
6-1-2固體潮模式不完善所引起的軌道誤差78
6-2海潮模式引起的軌道誤差79
6-2-1不同海潮模式引起的軌道誤差79
6-2-2未考慮海潮模式造成的軌道誤差81
6-3大氣阻力模式引起的軌道誤差82
6-4太陽與地球輻射壓引起的軌道誤差83
6-4-1不考慮太陽與地球輻射壓引起的軌道誤差84
6-4-2輻射壓阻力模式不完善所引起的軌道誤差85
6-5擾動力模式誤差綜合分析88
第七章 結論與建議91
參考文獻93
附錄A 中華二、三號衛星定軌設定資料96
A-1參考框架(Reference frame)96
A-2 模擬軌道參數設定98
附錄B GEODYN II 功能簡介100
B-1計算流程100
作者簡歷102
中文參考資料
太空計畫室,中華二號衛星科學實驗計畫徵求公告說明會,新竹,1997。
內政部,中華民國台灣地區三角點成果表,聯勤測量隊,台北,1970。
尹鐘奇,實用大地測量學,國章出版社,台中市,1994。
李坤煌,GPS軌道誤差特性及基線重複性分析,國立交通大學土木工程學系研究所碩士論文,新竹市,1996。
林敏傑,低軌衛星近似圓形軌道快速計算法,國立交通大學土木工程6.學系研究所碩士論文,新竹,1997。
胡明城、魯福,現代大地測量學,測繪出版社,北京,1994。
陳俊德,以GEODYN II模擬精密軌道計算,國立交通大學土木工程學系研究所碩士論文,新竹市,1998。
劉肩吾,中華三號衛星COSMIC任務說明會,台北,1998。
西文參考資料
Alfred, L., GPS Satellite Surveying, 2nd ed, Wiley-Interscience, Maine, 1994.
AlliedSignal Technical Services Corporation, TT&C Subsystem User''s Manual, Hsin-Chu, December 1997.
Andersen, P.H., K. Aksnes, and H. Skonnord, Precise ERS-2 orbit determination using SLR, PRARE, and RA observations, J. Geod., 72, pp. 421-429, 1998.
Boucher, C., Z. Altamimi, and P. Sillard, IERS Technical Note 24, France, 1998.
Colombo, O.L., The Dynamics of Global Positioning System orbits and the determination of precise ephemeris, J. Geophys. Res., 94, pp. 9167-9182. 1989.
Cui, C. and M. Mareyen, Gauss''s equations of motion in terms of hill variables and first application tonumerical integration of satellite orbits, man. geod., 17, pp. 155-163, 1992.
Dodson, A. H., GPS for Height Determination, Survey Reviews, 33, pp. 66-76. 1995.
Dodson, A.H., P.L. Shardlow, L.C.M. Hubbard, G. Elgered, and P.O.J. Jarlemark, Wet Tropospheric Effects on Precise Relative GPS Height Determination, J. Geod., 70, pp. 188-202. 1996.
Documentation for the GAMIT GPS Analysis Software, -Release 9.7, Scripps Institution of Oceanography University of California at San Diego, San Diego, 1997.
Emeljanov, N.V. and A.A. Kanter, A method to compute inclination functions and their derivatives, man. geod., 14, pp. 77-83, 1989.
Goad, C.C., An Efficient Algorithm for the Evaluation of Inclination and Eccentricity Functions, man. geod., 12, pp. 11-15, 1987.
Heiskanen, W.A. and H. Moritz, Physical Geodesy, W.H. Freeman and Co., San Francisco, 1967.
Hwang, C. and M. J. Lin, Fast Integration of Low Orbiter''s Trajectory Perturbed by the Earth''s Non-Sphericity, J. Geod., 72, pp. 578-585, 1998.
IGS, Internationa GPS Service for Geodynamics -Resource Information, February 1998.
Integ, 1998. http://www.integ.com/
Kaula, W.M., Theory of Satellites Geodesy, Blaisdell Publ. Co., London, 1966.
Kleusberg, A. and P.J.G. Teunissen, Editors, GPS for Geodesy, 2nd ed, Springer, Germane, 1998.
Knocke, P.J., J.C. Ries, and B.D. Tapley, Earth radiation pressure effects on satellite, Proceedings of the AIAA/ASS Astrodynamics Conference, pp. 577-587, 1988.
Lebedev, N.N., Special Functions and Their Applications, Dover, New York, 1972.
Lemoine, F.G., et al., The Development of Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA/TP - 1998 - 206861, 1998.
Lieske, J.H., T.Lederle, W. Fricke, and B. Morando, Expression for the precession quantities based upon the IAU(1976) system of astronomical constants, Astr and Astro, 58, pp. 1-16, 1977.
McCarthy D. D., IERS Standards, Observatoire de Paris, IERS Tech. Note 13, 1992.
McCarthy, J.J., et al., GEODYN II System Operation Manual, vol. 1-5. NASA/Goddard Space Flight Center, Greenbelt, 1993.
Melbourne, W.G., T.P. Yunck, W.I. Bertiger, B.J. Haines, E.S. Davis, Scientiffic applications of GPS on low earth orbiters, SPN 4/1993, pp. 131-145, 1993.
NSPO, 1999, http://www.nspo.gov.tw/
Reigber, C., Gravity Field Recovery from Satellite Tracking Data, Leture Notes in Earth Sciences, 25, Springer, Berlin, pp. 197-234, 1989.
Rosborough, G.W. and B.D. Tapley, Radlal, Transverse and Normal Satellite Position Perturbations Due to the Geopotential, Cel. Mech., 40, pp. 409-421, 1987.
Schrama, J.O., Gravity Field Error Analysis : Applications of Global Positioning System Receivers and Gradiometers on Low Orbiting Platforms. J. Geophys. Res., 96, pp. 20041-20051, 1991.
Seidelmann, P.K., Explanatory Supplement to the Astronomical Almanac, California, 1992.
Seeber, G., Satellite Geodesy, Walter de Gruyter, Berlin, 1993.
Smith, A.J.E., E.T. Hesper, D.C. Kuijper, G.J. Mets, P.N.A.M. Visser, B.A.C. Ambrosius, and K.F. Wakker, TOPEX /Poseidon Data Analysis Study Final Report, Delft University of Technology. Netherlands, 1994.
Standish, E.M., The observational basis for JPL''s DE200, the planetary ephemerides of the astronomical almanac, Astr. Astro., 233, pp. 252-271, 1990.
Tapley, B.D. and G.W. Rosborough, Geographically Correlated Orbit Error and Its Effect on Satellite Altimetry Missions, J. Geophys. Res., 90, pp. 11817-11831, 1985.
Tapley, B.D., Fundamentals of orbit Determination, Lecture notes in Earth Sciences, 25, pp. 235-260, 1989.
Tapley, B.D., et al., Precision orbit determination for TOPEX /POSEIDON, J. Geophys. Res., 99, pp. 24383-24404, 1994.
Velez, C.E., et al., Calculation of precision satellite with equinoctial elements (VOP formulation), Lecture notes in mathrmatics, 362, pp. 184-206, 1972.
Wagner, C.A., Radial Variations of a Satellite Orbit Due to Gravitational Errors : Implications for Satellite Altimetry. J. Geophys. Res., 90, pp. 3027-3036, 1985.
Wagner, C.A., Accuracy Estimate of Geoid and Ocean Topography Recovered Jointly from Satellite Altimetry. J. Geophys. Res., 91, pp. 453-461, 1986.
Wahr, J., The forced nutations of an elliptical, rotating, elastic, and oceanless earth, Geophys, J. Roy. Astron. Soc., 64, pp. 705-727, 1981.
Wahr, J., M. Molenaar, and F. Bryan, Time variability of the Earth''s gravity field : Hydrological and oceanic effects and their possible detection using GRACE, J. Geophy. Res., 103, pp. 30205-30230, 1998.
Wnuk, E. and T. Jopek, Satellite Orbit Calculations Using Geopotential Coefficients Up to High Degree and Order, Adv. Space Res., 14, pp. 35-42, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top