(3.231.166.56) 您好!臺灣時間:2021/03/08 12:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅先慶
研究生(外文):Shian-Ching Lo
論文名稱:研磨粉體對二氧化矽與鋁薄膜之化學機械研磨特性研究
論文名稱(外文):Characterization of Abrasives on Chemical-Mechanical Polishing Silicon Oxide and Aluminum Thin Films
指導教授:涂肇嘉蔡明蒔蔡明蒔引用關係
指導教授(外文):George C. TuMing-Shih Tsai
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:46
中文關鍵詞:研磨粉體化學機械研磨
外文關鍵詞:AbrasiveChemical-Mechanical Polishing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在積體電路的製程中,為了要達到0.35um的線寬與多重金屬連線,全面平坦化是必須的,而化學機械研磨(CMP)是現在的平坦化技術中,最能夠達到全面平坦化的要求的技術。研磨液中的研磨粉體(abrasive)在CMP過程中,扮演著舉足輕重的角色,但目前尚不十分明瞭其實際的反應機制。除了機械的磨耗部份,研磨粉體與晶圓(wafer)表面的作用力亦不容忽視。
本實驗中利用不同的氧化鋁研磨粉體研磨二氧化矽與鋁薄膜,試著找出粉體的相組成如何影響化學機械研磨。此外,利用氧化鋁及二氧化矽粉體在鋁與二氧化矽薄膜上作研磨,以此比較及探討粉體/研磨層在化學機械研磨上的相互作用。當研磨粉體與研磨薄膜屬於同材質時(因鋁薄膜在進行化學機械研磨時,表面易生成一層氧化鋁,在本文中視為與氧化鋁同材質),此時磨除作用主要受到機械磨耗的影響。其研磨速率與研磨粉體的幾何形狀有很大的關連,當粉體呈稜角狀與粒徑較大時會有高的研磨速率。
而在研磨粉體與研磨薄膜屬不同材質時,靜電作用力主導了化學機械研磨的磨除率,當研磨液的pH值落於研磨粉體於薄膜的等電位點間時會有最大的磨除率,此時粉體與薄膜間存在靜電吸引力,而使粉體撞擊薄膜表面的頻率增加,造成溶解物質吸附在粉體上的量增加。
在研磨後的表面粗糙度方面,表面粗糙度受粉體的粒徑與研磨墊的硬度影響,在較大粒徑的研磨粉體與較硬的研磨墊上會造成較大的表面粗糙度。

In the integrated circuit (IC) industry, global planarization of the wafer is an important process to achieve 0.35 um linewidths and multilevel interconnections; chemical-mechanical polishing (CMP) is the most effective technology for global planarization. Abrasives in the slurry play important roles in the CMP process, they are responsible not only for the mechanical abrasion of the materials being polished, but also some interactions related to surface charges between the abrasives and the polishing surface being polished are critical in CMP.
In this study, alumina and silica polishing powders are employed in polishing oxide and aluminum films to explore their influences on the chemical-mechanical polishing (CMP) performance. In the case of polishing film with abrasive of the same material, it has been found the mechanical abrasion would dominate the overall material removal. (It should point out that in the present work, aluminum film was assumed as the same material of alumina, since it usually present a passive oxide layer during CMP operation) The removal rate would be strongly depended upon the geometry factors of abrasives, that means higher removal rate could be obtained by polishing with larger and sharp-edged abrasive than that with small and rounded one.
The electrostatic interaction between the abrasive and the film tends to dominate the CMP removal rate when the abrasives and the polished films are of different isoelectric points (I.E.P.). The maximum removal rate is obtained at the slurry pH values being between the I.E.Ps. of the polished film and the abrasive. Polishing at this range of slurry pH value, electrostatic attraction exists between abrasives and the films being polishing, which results in the enhancement of impinging frequency of abrasives on the films and absorbing of dissolved materials onto the abrasives.
The surface roughness after polishing would depend upon the abrasive size and the pad hardness. Polishing with larger particle size and harder pad would result in rougher surface.

中文摘要……………………………………………………i
英文摘要……………………………………………………iii
致謝…………………………………………………………v
圖目錄………………………………………………………vi
表目錄………………………………………………………ix
第一章 緒論…………………………………………………1
第二章 理論基礎……………………………………………3
§2.1 膠凝穩定………………………………………………3
§2.2 過渡相氧化鋁的結晶相………………………………6
§2.3 介電層CMP的拋光機制………………………………7
2.3.1 機械效應……………………………………………8
2.3.2 化學效應……………………………………………10
§2.4 金屬層CMP的拋光機制………………………………11
2.4.1 鋁薄膜CMP中化學機制……………………………11
2.4.2 鋁薄膜CMP的電化學效應…………………………13
第三章 實驗步驟與方法……………………………………16
§3.1 晶片的製備……………………………………………16
§3.2 薄膜厚度的量測………………………………………17
§3.3 粉體性質的量測………………………………………18
3.3.1 BET比表面積量測…………………………………18
3.3.2 粉體的相鑑定………………………………………19
3.3.3 粉體粒徑的測定……………………………………19
3.3.4 列塔電位的量測……………………………………22
§3.4 化學機械研磨過程……………………………………23
3.4.1 二氧化矽薄膜的化學機械研磨參數………………23
3.4.2 鋁合金薄膜的化學機械研磨參數…………………24
§3.5 化學機械研磨後之晶片量測…………………………24
3.5.1 研磨速率量測………………………………………24
3.5.2 不均勻度的量測……………………………………25
3.5.3 表面粗糙度的量測…………………………………25
第四章 結果與討論…………………………………………26
§4.1 氧化鋁粉的分析結果…………………………………26
4.1.1 研磨粉體分析總結…………………………………30
§4.2 研磨粉體與研磨薄膜材質相同的機制探討…………30
4.2.1 二氧化矽粉體/二氧化矽薄膜的研磨………………31
4.2.2 氧化鋁粉體/鋁合金薄膜的研磨……………………31
4.2.3 相同材質的研磨粉體與薄膜的研磨總結…………32
§4.3 研磨粉體與研磨薄膜材質不相同的機制探討………33
4.3.1 氧化鋁粉體/二氧化矽薄膜的研磨…………………33
4.3.2 二氧化矽粉體/鋁合金薄膜的研磨……………………36
4.3.3 不相同材質的研磨粉體與薄膜的研磨總結…………37
§4.4 研磨粉體對表面粗糙度的影響………………………38
4.4.1 研磨粉體對二氧化矽薄膜表面粗糙度的影響………38
4.4.2 研磨粉體對鋁合金薄膜表面粗糙度的影響…………39
4.4.3 研磨粉體對薄膜表面粗糙度的影響總結……………39
第五章 結論…………………………………………………40
參考資料……………………………………………………42

(1) F. B. Kaufman, et al, "Chemical-Mechanical Polishing for Fabricating Patterned W Metal Features as Chip Interconnects", The Electrochemical Society, Inc, No. 11, Nov. 1991.
(2) S. Sivaram, et al, "Planarizing Interlevel Dielectrics by Chemical Mechanical Polishing", Solid State Technology, pp. 87-91, May 1992.
(3) Stanley Wolf, "Silicon Processing for the VLSI Era", Lattice Press, 1995.
(4) S. Morimoto, et al, "Characterization of the Chemical-Mechanical Polishing of Interlayer Dielectric Film", Proc. Electrochem. Soc., pp. 449, 1993.
(5) W. L. Patrick, et al, "Application of Chemical Mechanical Polishing to Fabrication of VLSI circuit interconnections", J. Electrochem. Soc., Vol. 138, pp. 1778, 1991.
(6) Iqbal Ali et al, "Chemical-Polishing of Interlayer Dielectric", Solid State Technology, pp. 63-70, Oct. 1994.
(7) R.J Hunter, "Introduction to Modern Colloid Science," Oxford University Press Inc., New York, Chapter9, 1993.
(8) D. J. Shaw, "Introduction to Colloid and Surface Chemistry", Redwood Books, Wiltshire, pp. 174-176, 1994.
(9) E. J. W. Verwey and J. Th. G. Overbeek, "Theory of the Stability of Lyophobic Colloids", Elsevier Pobulishing Co., Amsterdam, 1948.
(10) T. Sato and R. Richard, "Stabilization of Colloidal Dispersion by Polymer Adsorption", Marcel Dakker Inc., New York, chapter 2, 1982.
(11) Karl Wefers and Gordon M. Bell, "Oxide and Hydroxide of Alumina", Technical paper No. 19, 1972.
(12) Millot, "Geology of Clay", Springer-Uerrlag, New York, pp. 55-62, 1970.
(13) S. J. Wilson and J. D. Mcconnel, "A Kinetic Study of the System γ-AlOOH", J. Solid State Chemistry, Vol. 34, pp. 315-322, 1989.
(14) I. M. Low and R. Mcpherson, "Crystallization of Gel-Derived Alumina and Alumina-Zirconia Ceramics", J. Mat. Sci., Vol. 24, pp. 892-898, 1989.
(15) E. Husson and Y. Repelin, "Structure Studies of Transition Aluminas. Theta Alumina", Eur. J. Solid State Inorg. Chem., pp. 1223-1231, 1996.
(16) L. D. Hart, Editor, "Alumina Chemical: Science and Technology Handbook", Am. Ceram. Soc., 1990.
(17) T. Izumitani, "Polishing, Lapping, and Diamond Grinding of Optical Glasses", Material Science and Technology, Vol. 17, Glass Ⅱ, ed. by M. Tomozawa and R. H. Doremus, Academic Press, New York, pp.115, 1979.
(18) L. Holland,"The Properties of Glass Surfaces", Chapman and Hall, London, 1964.
(19) T. Izumitani, "Polishing Mechanism of Optical Glasses", Glass Technology, Vol. 12, pp. 131, 1971.
(20) M. Tomozawa et al, "Diffusion of Water into Oxides During Microhardness indenttation", Journal of Materials Science Letters, pp. 867-868, 1987.
(21) F. W. Preston, "The Theory and Design of Plate Glass Polishing Machines", J. Soc. Glass Technology, Vol. 11, pp. 214, 1927.
(22) J. F. Archard, "Contact and Rubbing of Flat Surface", J. Appl. Phys., Vol. 24, pp. 981, 1953.
(23) Minoru Tomozawa, "Oxide CMP Mechanism", Solid State Technology, pp. 169-175, July 1997.
(24) N. Brown and L. Cook, Paper TuB-A4, Tech. Digest, Topical Meeting on the Science of Polishing, Optical Society of America, Vol. 17, April 1984.
(25) Joseph M. Steigerwald et al, "Chemical Mechanical Planarization of Microelectronic Materials", John Wiley & Sons Inc., New York., 1998.
(26) Lee M. Cook, "Chemical Process in Glass Polishing", Journal of Non-Crystalline Solids, pp. 152-171, 1990
(27) Kuniko Kikuta et al, "Aluminum-Germanium-Copper Multilevel Damascene Process Using Low-Temperature Reflow Sputtering and Chemical Mechanical Polishing", IEEE Transaction on Electron Devices, Vol. 43, No5, May 1996.
(28) J. W. C, U. S. Patent 4,954,142, 1990.
(29) F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearsons, and M. B. Small, "Chemical-Mechanical Polishing for Fabricating Patterned W Metsalk Features as Chip Interconnects", J. Electrochem. Soc., Vol. 138, No. 11, November 1991.
(30) C. C. Yu, T. T. Doan, and A. E. Laulusa, U. S. patent, 5209816, 1993.
(31) M. Pourbaix, "Lectures on Electrochemical Corrosion", Plenum Press, New York, 1976.
(32) Denny A. Jones, "Principles and Prevention of Corrosion", Macmillan Publishing Company, New York, pp. 49-60, 1991.
(33) Ingemar Olefjord and Anders Nylund, "Surface Analysis of Oxidized Aluminium", Surface and Interface Analysis, Vol. 21, pp. 290-297, 1994.
(34) S. Lowell, "Introduction to Powder Surface Area", John Wiley & Sons, New York, pp. 1-56, 1979.
(35) B. D. Cullity, "Elements of X-ray Diffraction", Addison Wesley, pp. 99-106, 1978.
(36) R. J. Hunter, "Zeta Potential in Colloid Science, Principle and Application", New York, Academic Press, 1981.
(37) R. P. Donvan, T. Yamamoto and R. Periasamy, "Particle deposition, adhesion, and removal", Mater. Res. Soc. Symp. Proc., pp3-22, 1993.
(38) F. Booth and J. Enderby, "On Electrical Effects due to Sound Waves in Colloid Suspensions", Proc. of Amer. Phys. Soc., Vol. 208A, pp.32, 1952.
(39) Iqbal Ali, Sudipto R. Roy, "Pad Conditioning in Interlayer Dielectric CMP", Solid State Technology, pp. 185-191, June 1997.
(40) Allison Chang et al, "Post-CMP Particle Removal with DI Water", CMP-MIC, pp. 185-192,Feb 1996.
(41) F. Tardif, et al., "Cleaning after Silicon Oxide CMP", Microelectronic Engineering, pp. 285-291, 1997.
(42) S.V. Babu et al, "The Role of Particulate Properties in the Chemical-Mechanical Polishing of Copper", CMP-MIC, pp. 121-127, Feb. 1998.
(43) Chain-Wen Huang, "Characterization of Abrasive for Chemical-Mechanical Polishing of Silicon Dioxide Thin Films", June 1998.
(44) T. Izumitani, Paper TuB-A4, Tech. Digest, Topical Meeting on the Science of Polishing, Optical Society of America, Vol. 17, April 1984.
(45) Y. L. Wang, et al. "Material Characteristics and Chemical-Mechanical Polishing of Aluminum alloy thin films", Thin Solid Films, pp. 397-403, 1998.
(46) Joseph H, et al. "ASM Handbook: Friction, Lubrication, and Wear Technology" Vol. 18,pp.184-198, 1992.
(47) T. W. Healy et al. "Heterogulation in Mixed Oxide Colloidal Dispersion", J. Colloid and Interface Science, Vol.42, No. 3, pp.647-649, 1973.
(48) H. Ohshima, D. Y. C. Chan et al, "Improvement on the Hogg-Healy-Fuerstenau Formulas for the Interaction of Dissimilar Double Layer", Journal of Colloid and Interface Science, pp.222-242, 1983.
(49) T. Izumitani, in: Treatise on Material Science and Technology. Academic Press, Vol. 17, pp. 115, 1979.
(50) K. Bourne, F. Canning and R. Pitkethley, J. Phys. Chem. Vol. 17, pp.2197, 1970.
(51) N. Brown, P. Baker and R. Maney, Proc SPIE 306, pp.42, 1981.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔