(3.237.178.91) 您好!臺灣時間:2021/03/02 22:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:卓錫樑
研究生(外文):Shyi-Liang Jwo
論文名稱:熱壓合瞬間黏著之熱塑型聚亞醯胺的製備及其結構和特性之研究
論文名稱(外文):A Study on Preparation and Structure and Characteristics of Thermoplastic Polyimide Films for Instant Hot-Melt Adhesive
指導教授:黃華宗
指導教授(外文):Wha-Tzong Whang
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:141
中文關鍵詞:熱塑型聚亞醯胺二胺基聚硅烷引線架臨界表面張力組織形態剝離強度
外文關鍵詞:thermoplastic polyimidesaw-bis(3-aminopropyl)polydimethylsiloxaneleadframecritical surface tensionmorphologypeel strength
相關次數:
  • 被引用被引用:1
  • 點閱點閱:365
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
選用多種不同結構之芳香族二胺與二酸酐單體聚合製備一系列取代基種類與官能基位置不同之熱塑型聚亞醯胺(thermoplastic polyimides;TPI)薄膜材料,另以二胺基聚硅烷(a,w-bis(3-aminopropyl)
polydimethylsiloxane;APPS)分別與3,3¢,4,4¢-benzophenone tetracarboxylic dianhydride(BTDA)/2,2-bis(4-[3-aminophenoxy]phenyl) sulfone (m-BAPS)製備一系列含不同分子量與含量之APPS的聚硅烷改質聚亞醯胺(poly(imidesiloxane)s;PIS)。模擬LOC (Lead-on-Chip)構裝的製程,TPI或PIS薄膜材料經由高溫瞬間熱壓機於短時間內與引線架基材(如: alloy-42 鎳-鐵合金)直接壓合,同時進行此二材料之間的黏著性能研究。另外亦進行各薄膜材料之玻璃轉移溫度(Tg)、機械性與熱安定性的量測,評估材料的基本特性。採用平衡接觸角量測法評估材料的臨界表面張力(或稱表面能),進行不同組成之TPI或PIS薄膜材料之表面能對PIS或TPI/alloy-42間界面黏著性的關係研究。針對TPI的溶解度參數與PIS中APPS含量、分子量對PIS之組織形態的影響,與PIS之表面特性與組織形態對其機械性質及其與alloy-42片間之界面黏著力的影響。
胺基位於苯環上之間位(meta-)位置者,相對於位於對位(para-)位置者其TPI材料的Tg值與熱分解溫度較低,而臨界表面張力(gc)與剝離強度則偏高;TPI中之二胺與二酸酐單體的主鏈中同時含有醚基者,其與alloy-42間的結合可獲得較高的剝離強度,BTDA/1,3-bis(3-amino- phenoxy)benzene (m-BAPB)、ODPA/(m-BAPS)及4,4¢-oxydiphthalic anhy- dride(ODPA)/m-BAPB及等三種TPI系統皆具有良好的耐熱性與機械性質,且其與alloy-42之間的剝離強度分別為10.5、12.2、及13.2 N/cm,此強度超過積體電路(IC)封裝的規範標準,10 N/cm。
對pyromellitic dianhydride(PMDA)/p-phenylene diamine(p-PDA)為主基材之PIS而言,當其APPS的分子量Mn分別為507與715克/莫耳且其含量,亦即APPS/PIS莫耳分率,分別為 3 0.5%、0.1%時,即產生相分離。對BTDA/m-BAPS為主基材之PIS而言,當其APPS的分子量分別為996、715與507克/莫耳(分別簡稱為PIS9Siy,PIS7Siy及PIS5Siy;其中的y代表APPS/PIS莫耳分率)且其"y"值分別為 3 0.6%、1.1%與2.7%時,即有相分離的現象產生;而當"y"值分別為 3 7.7%、10.0%與16.6%時,此PIS中富含硅烷之獨立相將會形成一連續性的相。由研究得知APPS分子量較大者,較易產生相分離及APPS-rich的連續相。這些剛剛好形成硅烷連續相之PIS薄膜者,具有明顯的塑性變形行為與最大的延伸率。具有相分離之BTDA/m-BAPS系統的 PIS薄膜具有兩個 Tg點,一個在-118℃ ~ -115℃,另一個在181℃ ~ 244℃之範圍。
PIS薄膜之gc值大小隨APPS的含量與分子量的增加而降低。對同
一PIS薄膜系列而言,其gc與表面矽濃度,[Sisurf],呈線性的反比關係;
在PIS7Siy及PIS5Siy各系列中,其組織形態分別於"y"值等於1.1%與2.7%時,會由均勻相變為非均勻相,使其gc與[Sisurf]之間的關係曲線分別於此"y"值點處產生偏折。而PIS9Siy系列所得的關係曲線則沒有偏折的現象。
Alloy-42片的表面經UV/O3處理後,可改善其表面的潤濕性,提昇PIS薄膜與alloy-42間黏合界面之剝離強度達20%以上。PIS薄膜為同一組成分時,薄膜的流動性顯著地影響黏合界面的黏著強度;當PIS薄膜的組成分不同時,在相同的壓合溫度(400℃)下,薄膜的流動性並非影響界面黏著強度的重要因素。PIS5Si0.6與alloy-42間黏合界面的真正界面黏著力比純BTDA/ m-BAPS聚亞醯胺者高出80%;PIS9Siy與alloy-42間黏合界面的真正界面黏著力則皆為零。潤濕動力學的研究結果顯示,同一系列的PIS(如:PIS5Siy或 PIS9Siy系)中APPS含量愈高者,潤濕活化能愈高,而相分離的形成則具有顯著提昇此活化能的效果。PIS/alloy-42黏合材之PIS剝離膜面的表面形態愈粗糙者,其界面黏著力愈強。
A series of fully aromatic thermoplastic polyimides(TPI) films were prepared with various of aromatic diamine monomers and dianhydride monomers. The relations between the critical surface tension(gc) , glass transition temperature (Tg), thermal properties, adhesive strength and the molecular structure of the TPI were investigated. It is found that the gc of TPI and the peel strength between the TPI film and alloy-42 plate are higher, and the Tg is lower when the amine groups are situated in the meta position as opposed to the para position. As ether linkage is introduced in dianhydride and diamine, the peel strength between the TPI and alloy-42 plate can be improved . The peel strength of 3,3¢,4,4¢-benzophenone tetracarboxylic dianhydride(BTDA)/1,3-bis(3-aminophenoxy)benzene(m-BAPB), ODPA/
2,2¢-bis (4-[3-aminophenoxy]phenyl)sulfone(m-BAPS), and 4,4¢-oxydiph- thalic anhydride(ODPA)/m-BAPB, is10.5, 12.2, and 13.2 N/cm respectively, which is higher than the requirement of adhesive strength,10 N/cm, between the adhesive tape and leadframe(metal) in integrated circuit(IC) package.
Siloxane modified polyimides, called poly(imide siloxane)s,(PISs), were also prepared. The dependence of morphology of the (PISs) on the solubility parameter of unmodified polyimides and the molecular weight and content of a,w-bis(3-aminopropyl)polydimethylsiloxane (APPS) has been studied. The effect of the morphology on the mechanical properties is also under investigation. The domain formation in the PISs with the APPS molecular weight Mn = 507 g/mole is not found until the mole ratio of APPS/PIS 3 0.5% in the pyromellitic dianhydride / p-phenylene diamine (PMDA/p-PDA) based PISs and at mole ratio 3 2.7% in the BTDA/m-BAPS based PISs. As the APPS Mn = 715 g/mole, the critical APPS concentrations of the domain formation in both types of PISs are equal to 0.1% and 1.1%, respectively. The critical concentration is equal to 0.6% in the BTDA/m-BAPS based PIS film with the APPS Mn = 996 g/mole. The isolated siloxane-rich phase in the BTDA/m-BAPS based PISs becomes a continuous phase as the mole ratio of APPS/PIS 3 7.7%, 10.0% and 16.6% as the APPS Mn = 996 g/mole, 715 g/mole, and 507 g/mole, respectively.
The effect of surface characteristics and morphology of the PIS film on the true interfacial adhesion between the PIS film and alloy-42 substrate has been studied. The effect of viscosity of PIS film and the surface treatment of UV/ozone ( UV/O3 ) on alloy-42 plates on the peel strength of PIS films/alloy-42 joints is also investigated. The gc of the PIS film decreases with the content and the molecular weight of APPS. The BTDA/m-BAPS based PIS films with the APPS molecular weight Mn = 996 g/mole (PIS9Siy) show two phases in all compositions and linear dependence of the gc on the surface concentration of silicon, [Sisurf], on the PIS films. The PIS film with the APPS Mn = 507 g/mole (PIS5Siy) or Mn = 715g/mole (PIS7Siy) exhibit the morphology change from homogeneous phase to inhomogeneous phase starting at the mole ratio ( y ) of APPS/PIS = 2.7% and 1.1%, respectively. The curves of gc dependence on the [Sisurf] discontinue or deflect at these two compositions respectively. The treatment of UV/O3 on alloy-42 plates improves the wetting on the alloy surface and promotes the peel strength between the PIS films and alloy-42 plates by a magnitude of 3 20%. It shows that the flowability of the same PIS films bonding at different temperatures significantly affects the bonding strength of the joints, but the flowability of different PIS films bonding at the same temperature, e.g. 400℃, is not the key factor governing the bonding strength of the joints. The true interfacial adhesion of the PIS5Si0.6/alloy-42 joint is of 80% higher than that of the unmodified BTDA/m-BAPS based polyimide film/alloy-42 joint. However, zero true interfacial adhesion is obtained between the PIS9Siy films and alloy-42 plates. The wetting kinetics study shows that the higher the siloxane content in the PIS, the higher the activation energy for the adhesive bonding process. And the phase separation significantly increases the activation energy. The scanning electron micrographs of the peeled-off PIS film surfaces from the PIS/alloy-42 joints reveal the rougher surface morphology from the sample with a higher interfacial adhesion.
封面
中文摘要
英文摘要
誌謝
目錄
表目錄
圖目錄
反應流程目錄
符號說明
一、緒論
二、理論
2.1 二胺基聚硅烷(APPS)之分子量的預估及反應物劑的推導
2.2 聚亞醯胺合成
2.3 臨界表面張力
2.4 剝離強度與界面黏著強度
三、實驗部分
3.1 儀器設備
3.2 藥品或材料
3.3 藥品的純化
3.4 APPS預聚合物(oligomer)的合成
3.4.1 tetramethylammonium siloxanolte(TMAS)促進劑之合成製備
3.4.2 Mn=507、716或996克/莫耳之APPS預聚合物的製備
3.5 TPI薄膜的製備
3.5.1 聚醯胺酸的合成
3.5.2 聚醯胺酸的塗膜與亞醯胺化
3.6 PIS薄膜的製備
3.6.1 聚硅烷醯胺酸(poly(amic acik siloxane))的合成
3.6.2 聚硅烷亞醯胺薄膜的製備
3.7 剝離試驗用試件製作
3.7.1 Alloy-42片潔淨處理
3.7.2 TPI或PIS薄膜潔淨處理
3.7.3 TPI或PIS薄膜與alloy-42片之熱壓合程序
3.8 PAAS黏度的量測
3.9 光學顯微鏡觀察
3.10 表面張力的量測
3.11 玻璃轉移溫度的量測
3.12 熱分解溫度(Td)的量測
3.13 機械性質的量測
3.14 PIS薄膜表面矽濃度[Sisurf]的量測
3.15 PIS薄膜動態黏度(dynamic viscosities)的量測
3.16 剝離強度的測試
3.17 電子顯微鏡觀察
3.17.1 PIS薄膜破斷面的觀察
3.17.2 PIS薄膜剝離面的觀察
四、結果與討論
4.1 熱塑型聚亞醯胺(TPI)的結構與相關特性的關係
4.1.1 TPI之分子結構與玻璃轉移溫度(Tg)的關係
4.1.2 TPI之分子結構與熱安定性的關係
4.1.3 TPI之分子結構與黏著性能的關係
4.1.4 TPI之分子結構與臨界表面張力的關係
4.1.5 TPI之分子結構與機械性能的關係
4.2 研烷改質聚亞醯胺的組織形態與相關特性之研究
4.2.1 PI與PIS亞醯胺化的鑑定
4.2.2 APPS之分子量與添加量對PIS特性與組織形態的影響
4.2.3 APPS之分子量與添加量對PIS特性與組織形態的影響
4.2.4 PIS薄膜的DMA(Tg、機械性質)分析
4.2.5 PIS薄膜的熱安定心生或TGA分析
4.3 PIS的組織形態、表面特性、及UV/O表面處理對PIS/alloy-42接合材之界黏著力的影響
4.3.1 PIS薄膜表面矽濃度與其臨界表面張力的關係
4.3.1.1 PIS薄膜XPS的定性分析結果
4.3.1.2 PIS薄膜的臨界表面張力
4.3.1.3 PIS薄膜的組織形態對其表面矽濃度與臨界表面張力間的關係影響
4.3.2 UV/O表面處理對PIS/alloy-42接合材剝離強度的影響
4.3.3 黏著條件對PIS/alloy-42接合材剝離強度的影響
4.3.3.1 黏合溫度的影響
4.3.3.2 黏合時間與壓力的影響
4.3.4 PIS薄膜之臨界表面張力與其接合材剝離強度的關係
4.3.5 PIS/alloy-42接合材的真正界黏著強度及其影響因素
4.3.6 PIS薄膜與alloy-42黏結合的活化能
4.3.7 PIS薄膜之黏度與黏著強度的關係
4.3.8 PIS膜剝離面(peeled-off PIS surface)的組織形態與黏著強度
五、結論
1. M. Lamson, "Lead-on-chip technology for high performance packag-
ing ", in proc. IEEE, PP.1045-1050 (1993).
2. M. Amagai, "Development of a tapeless Lead-on-Chip package," in
proc. IEEE, ECTC, PP.506-512 (1994).
3. Y. Okugawa, T.Yoshida, and T. Suzuki, in proc. IEEE, PP. 570(1994).
4. H. Nakayoshi, N. Izawa, T. Ishikawa, and T. Suzuki , in proc. IEEE,
P.575 (1994).
5. A. L. Endrey, US Patent, 3,179,630 (1965).
6. A. L. Endrey, US Patent, 3,179,631 (1965).
7. W. R. Hendrix, US Patent, 3,179,632 (1965).
8. A. L. Endrey, US Patent, 3,179,633 (1965).
9. R. J. Angelo, US Patent, 3,282,898 (1965).
10. M. K. Ghosh and K. L. Mittal (Eds), Polyimides : Fundamentals
and Applications. Marcel Dekker, New York (1996).
11. Y. Tsujita, K. Yoshimura, H. Yoshimizu, A. Takizawa, and T.
Kinoshita, Polymer, 34, 2597 (1993).
12. E. Sacher, J. E. Klemberg-Sapieha, H. P. Schreiber, and M. R. Werthei-
mer, J. Appl. Polym. Sci. : Appl. Polym. Symp., 38, 163 (1984).
13. L. Ying and R. Edelman, 31st National SAMPE Symposium, 31,
1131(1986).
14. A. K. St. Clair and T. L. St. Clair, in Polyimides: Synthesis, Characteri-
zation, and Applications, K. L. Mittal (Ed.), Vol.2, Plenum Press,
New York, 1984, p. 977.
15. L. F. Thompson, C. G. Willson and S. Tagawa, Eds., Polymers
for Microelectronics :Resists and Dielectrics.Am.Chem.Soc.,Washing-
ton, DC, 1994.
16. P. P. Policastro, J. H. Lupinski and P. K. Hernandez, in : Polymeric
Materials for Electronics Packaging and Interconnection, J. H. Lupin-
ski and R. S. Moore, Eds., Am. Chem. Soc., Washington, DC, 1989,
p.140.
17. S. Tamai, A. Yamaguchi, and M. Ohta. Polymer, 37,3683 (1996).
18. J. M. Kaltenecker-Commercon, T. C. Ward, A. Gungor, and J. E.
McGrath, J. Adhesion, 44, 85 (1994).
19. K. Cho, D. Lee, T.O. Ahn, K. H. Seo, and H. M. Jeong, J. Adhesion
Sci. Technol. 12, 253 (1998).
20. G. C. Davis, B. A. Heath and G. Gildenblat, in : Polyimides : Synthe-
sis, Characterization, and Applications, K. L. Mittal, Ed., Plenum Press,
New York , Vol. 2, 1984, p. 847.
21. Y. D. Lee, C. C. Lu, and H. R. Lee, J. Appl. Polym. Sci., 41, 77(1990).
22. T. Homma, Y. Kutsuzawa, K. Kunimune, Y. Murao, Thin Solid Films,
235, 80(1993).
23. V. H. Kuckertz, Die. Makromol. Chem., 98, 101 (1966).
24. J. D. Summers, Ph. D. Dissertation : Siloxane Modified Engineering
Polymers : Synthesis and Characteristics, Virginia Polytechnic
Institute and State University, Blacksburg, VA, 1988.
25. D. W. Van Krevelen and P. J. Hoftyzer, Properties of Polymers,
Elsevier Scientific Publishing Co., Amsterdam, 1976, Chapter 7.
26. A.J. Kinloch, Adhesion and Adhesives, Science andTechnology,
Chapman and Hall,London, New hork. 1987, Chapter 3.
27. L. P. Buchwalter, J. Adhesion Sci. Technol., 4, 697 (1990).
28. W. J. Van Ooij, in Physicochemical Aspects of Polymer Surfaces, K. L.
Mittal (ed.), Vol.2, Plenum Press, New York, 1984, pp. 1035-1091.
29. L. H.. Lee (ed.), Adhesive Bonding, Plenum Press, New York, 1991,
Chapter 3.
30. K.L. Mittal, Pure Appl. Chem., 52,1295(1980).
31. K.L. Mittal, Polym. Eng. Sci., 17,467 (1977).
32. G. M. Bower and L. Frost, J. Polym. Sci., Al, 3135 (1963).
33. L. P. Buchwalter, J. Adhesion Sci. Technol., 7, 941 (1993).
34. J. H. Jou, C. H. Liu, J. M. Liu, and J. S. King, J. Appl. Polym. Sci., 47,
1219 (1993).
35. S. P. Kowalczyk, C. D. Dimitrakopoulos, and S. E. Molis, Mater. Res.
Soc. Symp. Proc., 227, 55 (1991).
36. S. Wu, Polymer Interface and Adhesion, New York: Marcel Dekker,
1982.
37. L. H. Lee, J. Polym. Sci., Part A-2, 5, 1103(1967).
38. P. J. Andolino Brandt, C. L. Senger Elsbernd, N. Patel, G. York and J.
E. McGrath, Polymer, 31, 180(1990).
39. W. Volksen, Adv. Polym. Sci., 117, 112 (1993).
40. M. K. Ghosh, K. L. Mittal, "Polyimides", Chapter l (1995).
41. 黃華宗, 金進興, 現代化工研討會專輯, 16-19, 259(1986).
42. W. A. Zisman, " Relation of the equilibrium Contact angle to liquid and
solid constitution", in : Contact Angle, Wettability and Adhesion, Adv.
Chem. Series, 43,1-51 (1964).
43. J. E. McNutt and G. M. Andes, J. Chem. Phys., 30, 1300(1959).
44. B. D. Ratner, P. K. Weathersby, A. S. Hoffman, M. A. Kelly and L. H.
Scharpen, J. Appl. Polym. Sci., 22, 643(1978).
45. A. W. Adamson, Physical Chemistry of Surface, 2nd ed., Wiley
Interscience, New York, 1967
46. W. T. Chen, T. F. Flavin, IBM J. of Res. and Develop., 16, 203(1972).
47. A. N. Gent and G. R. Hamed, J. Appl. Polym. Sci., 21, 2817(1977).
48. K. S. Kim and N. Aravas, Int. J. Solids Structures, 24(4), 417(1988).
49. K.S. Kim and J. Kim, J. Eng. Mater. and Technol, 110, 266(1988).
50. N. Aravas, K. S. Kim and M. J. Loukis, Mater. Sci. Eng., 107,159
51. H. R. Brown and A. C. M.Yang, J. Adhesion Sci. Technol., 6(3), 333
(1992)
52. D. Statas and F. Egan, Adhesive Age, 9(8), 22(1966).
53. J. Johnson, Adhesive Age, 11(4), 20(1968)
54. J. S. Riffle, I. Yilgor, A. K. Banthia, C. Tran, G. L. Wilkes and J. E. Mc-
Grath, in : Epoxy Resin Chemistry II, R. S. Bauer, Ed., ACS Symp.
Series 221, 1983, p. 21.
55. A. R. Gilbert and S. W. Kantor , J. Polym. Sci., 40, 35(1959).
56. J. D. Summers, C. S. Elsbernd, P. M. Sormani, P. J. A. Brandt, C. A.
Arnold, I. Yilgor, J. S. Riffle, S. Kilic, and J. E. McGrath, in : Inorganic
and Organometallic Polymer, M. Zeldin, K. J. Wynne, and H. R.
Allcock, Eds., ACS Symp., 1988, p. 360.
57. Wright, P. V., in : Ring-Opening Polymerization, K. J. Ivin and T.
saegusa, Eds., Elsevier, New York, Vol. 2, 1984, p. 1055.
58. R. A. Dine-Hart and W. W. Wright, Makromol. Chem., 153, 237(1972).
59. L. H. Lee, J. Appl. Polym. Sci., 12, 719-730(1968).
60. C. A. Pryde, J. Polymer Science, Part A, Polymer Chemistry, 27,
711(1989)
61. R. A. Dine-Hart and W. W. Wright, Die Makromolekulare Chemie,
143, 189 (1971).
62. P. D. Frayer, in:Polyimides:Synthesis, Characterization, and Appli-
cation, Vol. 1, K. L. Mittal, ed., Plenum, New York, 1984, P. 273.
63. H. Ishida, S. T. Wellinghoff, E. Bear, and J. L. Koening, Macromole-
cules, 13, 826(1980).
64. S. Tamai, A. Yamaguchi, and M. Ohta. Polymer, 37,3683 (1996).
65. T. L. St. Clair, A. K. St. Clair, and E. N. Smith, in : Structure- Solubility
Relationships in Polymer, F. W. Harries and R. B. Seymour, Eds., Aca-
demic Press, New York, 1977, p. 199.
66. T. S. Chung and E. Ronald Kafchinski, Polymer, 37, 1635 (1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔