|
1 Banerjee, A. K., and Bhattacharyya, G. K. (1979). Bayesian results for the inverse Gaussian distribution with an application. Technometrics, 21, 247-251. 2 Bhattacharyya, G. K.(1982). Fatigue failure models-Birnbaum-Saunders vs. inverse Gaussian.IEEE Trans. Reliab. R-31(5):439-440. 3 Bhattacharyya (1976). A purchase incidence model with inverse Gaussian interpurchase times. J. Amer. Statist. Assoc. 71, 823-829. 4 B. Betro and Rotondi R.(1991).On Bayesian inference for the Inverse Gaussian distribution.Statistics and Probability Letters 11. 219-224. 5 Chhikara, R. S.(1972). Statistical inference related to the inverse Gaussian distribution. Ph.D. Dissertation, Oklahoma State University, Stillwater. 6 Chhikara, R. S. and Folks, J. L.(1974). Estimation of the inverse Gaussian distribution function. J. Amer. Statist. Ass. 69, 250-254. 7 Chhikara, R.S. and Folks, J.L. (1977). The inverse Gaussian distribution as a lifetime model. Technometrics 19, 461-468. 8 Chhikara, R. S. and Guttman, I.(1982). Prediction Limits for the Inverse Gauissian Distribution. {\it Technometrics} , Vol. 24, NO. 4. 9 Lee, J. C. and Tsao, S. L.(1993). On Estimation and Prediction Procedures for AR(1) Models with Power Transformation. Journal of Forecasting, Vol. 12, 499-511. 10 Lancaster, A. (1972). A stochastic model for the duration of a strike. J. R. Statist. Soc. B 135, 257-271. 11 Hasofer, A.M. (1964). A dam with inverse Gaussian inpute. Proc.Camb. Phil. Sovc. 60, 931-933. J. Amer. Statist. Assoc. 71, 823-829. 12 Sheppard, C.W. (1962). Basic principles of the tracer thod.New York : Wiely. 13 Tweedie, M. C. K.(1957a). Statistical properties of inverse ussian distributions I. Ann. Math. Statist.,28:362-377.
|