跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/24 05:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戚振中
研究生(外文):Jenn-Jong Chi
論文名稱:指定接收者可動態調整的可靠性多點傳輸協定
論文名稱(外文):Reliable Multicast Transport Protocol with Dynamic Designated Receiver Adjustment
指導教授:陳耀宗陳耀宗引用關係
指導教授(外文):Yaw-Chung Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
中文關鍵詞:多點傳輸多點傳輸協定可靠性多點傳輸協定
外文關鍵詞:Multicastmulticast transport protocolreliable multicast protocolRMTP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多點傳輸(multicasting)對群組應用程式而言是最佳化使用網路資源的一項技術。其傳送者僅需傳送單一封包到所有群組成員,而不必針對所有的群組成員皆分別傳送一封包來達到有效利用網路資的目的。
研究指出以樹狀結構為基礎的多點傳輸協定是可靠性多點傳輸協定設計的最佳選擇。此外在Markus的研究報告中也指出,在以樹狀結構為基礎的多點傳輸協定中用來負責遺失封包重傳的指定接收者,應要能隨著網路流量及群組成員的變動而做調整。可靠性多點傳輸層協定(RMTP)是一個以樹狀結構為基礎的多點傳輸協定,但其無法動態的調整指定接收者。因此在這篇論文中,我們以可靠性多點傳輸層協定為基礎,提出了集中式及分散式兩種動態調整指定接收者的解決方案。
在我們的方法中,產生或解除一個指定接收者是以現任指定接收者的負載狀況及現任指定接收者至接收者的傳輸路徑距離為考量。在集中式的方案中,指定接收者的調整是在現任指定接收者主控下完成。而在分散式的方案中,則是由接收者間相互協調而完成。我們的研究顯示所提的方法比原始的可靠性多點傳輸協定有更佳的平均傳輸延遲時間,以及指定接收者間更好的負載平衡。

Multicasting is a technique to use the network efficiently for group communication applications. It effectively utilizes network resources by sending only one packet to all group members instead of sending multiple copies of the same data to each individual member.
Research in [27] have showed that the tree-based multicast transport protocol is the best choice for reliable multicast protocol design. Besides, Markus [18] pointed out the designated points (DRs), which are responsible for retransmitting lost packets in tree-based protocol, should be adapted to the dynamic change of the network traffic and the group member. Reliable multicast transport protocol (RMTP) is a tree-based protocol, but it is unable to accommodate the dynamic change mentioned above. In this thesis, we propose both a centralized and a distributed scheme based on RMTP to dynamically adjust DRs.
In our schemes, the generation and release of a new DR depends on the loading of its parent DR and the length of retransmission path from the parent DR to the receiver. In centralized scheme, a parent DR manages the process of DR adjustment. While in distributed scheme, the new DR adjustment is controlled among receivers. We show that schemes have much better performance than the raw RMTP in terms of average retransmission latency and DR load balancing.

Chapter 1 Introduction1
1.1 Overview1
1.2 Motivation3
1.3 Organization of The Thesis5
Chapter 2 Background6
2.1 Overview of Multicasting6
2.1 Group Management Protocol7
2.3 Multicast Routing Protocol8
2.3.1 Distance Vector Multicast Routing Protocol (DVMRP)9
2.3.2 Multicast Open Shortest Path First (MOSPF)9
2.3.3 Protocol-Independent Multicast (PIM) Routing Protocols9
2.3.4 Core Based Tree (CBT) Routing Protocol10
2.4 Multicast Transport Protocol10
2.4.1 General-Purpose Multicast Transport Protocols11
2.4.2 Multicast Transport Protocols For Interactive Applications11
2.4.3 Multicast Transport Protocols For Data Dissemination11
2.5 Reliable Multicast Protocol12
2.5.1 Sender-Initiated Protocols12
2.5.2 Receiver-Initiated Protocols12
2.5.3 Ring-Based Protocols13
2.5.4 Tree-Based protocols13
Chapter 3 Reliable Multicast Transport Protocol with Dynamic DR Adjustment15
3.1 Overview of RMTP16
3.2 Introduction of RMTP with Dynamic DR Adjustment17
3.2.1 System Assumptions20
3.2.2 Basic Protocol Operation21
3.3 Centralized DR Adjustment Scheme24
3.3.1 Receiver Operation for DR Adjustment24
3.3.2 ACK Processor (AP) Operation for DR Adjustment25
3.4 Distributed DR Adjustment Scheme29
3.4.1 ACK Processor (AP) Operation for DR Adjustment30
3.4.2 Receiver Operation for DR Adjustment30
Chapter 4 Simulation and Numerical Results34
4.1 Simulation-Part One34
4.1.1 Simulation Model and Evaluation Metrics34
4.1.2 Comparison For AP Load Balancing and Distribution36
4.1.3 Comparison For Retransmission Latencies43
4.2 Simulation-Part Two45
4.2.1 Comparison For System Response Time45
Chapter 5 Conclusions47
5.1 Summary47
5.2 Future Work48
Bibliography49

1. J. Postel, “Internet Protocol,” RFC-791, September 1981.
2. J. Postel, “Transmission Control Protocol,” RFC-793, September 1981.
3. J. Postel, “User Datagram Protocol,” RFC-768, August 1980.
4. V. Johnson, M. Johnson, “How IP Multicast Works”, IP Multicast Initiative, http://www.stardust.com/ipmulticast/community/whitepaper/howipmcworks.html
5. V. Johnson, M. Johnson, “Introduction to IP Multicast Routing”, IP Multicast Initiative, http://www.ipmulticast.com/community/whitepapers/introrouting.html
6. S.E. Deering, “ICMP Router Discovery Messages”, RFC-1256, September 1991.
7. T. Pusateri, “Distance Vector Multicast Routing Protocol,” Internet Draft, draft-idmr-dvmrp-v3-05.txt, October 1997.
8. J. Moy, “Multicast Extension to OSPF,” RFC-1584, March 1994.
9. T. Ballardie, P. Francis and J. Crowcroft, “Core Based Trees (CBT): An Architecture for Scalable Inter-Domain Multicast Routing,” Proceedings of ACM SIGCOMM ’93, September 1993.
10. D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson, C. Liu, P. Sharma, L. Wei, “Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification,” RFC-2117, June 1997.
11. H. Eriksson, “MBONE: The Multicast Backbone,” Communications of the ACM, Vol. 37, No. 8, Page 54-60, August 1994.
12. Katia Obraczka, “Multicast Transport Protocols: A Survey and Taxonomy”, IEEE Communications Magazine, Pages 94-102, January 1998.
13. Walid Mostafa, Mukesh Singhal, “A taxonomy of multicast protocols for Internet Applications”, Computer Communications, Pages 1448-1547, July 1997.
14. B.N. Levine, and J.J. Garcia-Luna-Aceves, “A Comparison of Known Classes of Reliable Multicast Transport Protocols,” Proceedings of International Conference on Network Protocols, October 1996.
15. R. Braudes and S. Zabele, “Requirements for Multicast Protocols,” RFC-1458, May 1993.
16. R. Aiello, E. Pagani and G. P. Rossi, “Design of a Reliable Multicast Protocol,” Proceedings of IEEE INFOCOM ’93, Pages 75-81, March 1992.
17. B. Rajagopalan, “Reliability and Scaling Issues in Multicast Communication”, Proceedings of ACM SIGCOMM ’92, Pages 188-198, September 1992.
18. Markus Hofmann, “A Generic Concept for Large-Scale Multicast,” Proceedings of International Zurich Seminar on Digital Communications (IZS ’96), Zurich, Switzerland, Springer Verlag, February 1996.
19. S Paul, K. Sabnani, “Reliable Multicast Transport Protocol (RMTP)”, IEEE Journal on Selected Areas in Communications, VOL. 15, NO. 3, April 1997.
20. J.C. Lin and S. Paul, “RMTP: A Reliable Multicast Transport Protocol,” Proceedings of IEEE INFOCOM ’96, Pages 1414-1424, March 1996.
21. W. Buskens, A. Siddiqui, S. Paul, “Reliable Multicasting of Continuous Data Streams”, Bell Labs Technical Journal, Spring 1997.
22. H.W. Holbrook, S.K. Singhal and D.R. Cherition, “Log-Based Receiver-Reliable Multicast for Distributed Interactive Simultaion,” Proceedings of ACM SIGCOMM ’95, Pages 328-341, October 1995.
23. P. Sharma, D. Estrin, S. Floyd and L. Zhang, “Scalable session messages in SRM,” IRTF Meeting, Cannes, France, September 1997.
24. C. Papadopoulos, G. Parulkar, G. Varghese, “An Error Control Scheme for Large-Scale Multicast Applications”, IEEE , Pages 1188-1196, 1998
25. S. Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, L. Zhang, “A Reliable Multicast Framework for Light-Weight Sessions and Application Level Framing”, IEEE/ACM Transaction on Networking, VOL. 5, No. 6, December 1997.
26. R. Yavatkar, J. Griffioen, “Reliable Dissemination for Large-Scale Wide-Area”, Communication Subsystems 1995 Third IEEE Workshop, 1995
27. S. Paul, Multicasting on The Internet and Its Applications, KLUWER ACADEIC PUBLISHERS, U.S.A., 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top