(3.237.178.91) 您好!臺灣時間:2021/03/02 21:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳慶生
研究生(外文):Ching-Sheng Chen
論文名稱:無線ATM網路上之智慧型複合存取控制
論文名稱(外文):Multiple Access Control with Intelligent Bandwidth Allocation for Wireless ATM Networks
指導教授:楊啟瑞楊啟瑞引用關係
指導教授(外文):Maria C. Yuang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:39
中文關鍵詞:無線非同步傳輸模式複合存取控制頻寬控制服務品質碰撞處理演算法自我相似訊務
外文關鍵詞:Wireless ATMMultiple Access ControlBandwidth AllocationQuality of ServiceCollision Resolution AlgorithmSelf-similar Traffic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:62
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在無線ATM網路中,複合存取控制 (Multiple Access Control) 的設計及動態頻寬安排 (Dynamic Bandwidth Allocation) 是兩項最具挑戰性的難題。本論文提出一個多功能的複合存取控制方法,名為智慧型複合存取控制系統 (IMACS),它可以保證四種傳輸形態 (CBR, VBR, ABR 及需求訊息) 的傳輸品質要求,同時達到最佳網路使用效率。智慧型複合存取控制系統由以下三個部分所組成:複合存取控制器 (MACER)、網路流量監測/預測器 (TEP) 及智慧型頻寬分配器 (IBA)。複合存取控制器採用混合模式 TDMA,及本文中新提出擁有最佳分割深度的動態分割碰撞處理演算法,網路流量監測/預測器提供 ABR 流量的線上監測及預測的資料,智慧型頻寬分配器則負責為動態分割碰撞處理演算法取得最佳的分割深度。最後,由數學分析及程式模擬的結果,證明本系統不論網路流量高低都能提供最佳的系統效率。

Two major challenges pertaining to wireless Asynchronous Transfer Mode (ATM) networks are the design of Multiple Access Control (MAC), and dynamic bandwidth allocation. While the former draws much attention, the latter has been considered non-trivial and left mostly unresolved. In this paper, we propose a versatile MAC scheme in conjunction with dynamic bandwidth allocation, referred to as the Intelligent Multiple Access Control System (IMACS), for wireless ATM networks. Supporting four types of services (CBR, VBR, ABR, and signaling requests), IMACS aims to efficiently satisfy their diverse Quality-of-Service (QoS) requirements while retaining a maximum of network throughput. IMACS is composed of three components: Multiple Access Controller (MACER), Traffic Estimator/Predictor (TEP), and Intelligent Bandwidth Allocater (IBA). MACER employs a hybrid-mode TDMA scheme, adopting a new dynamic-tree-splitting Collision-Resolution (CR) algorithm in accordance with the optimal Splitting Depth (SD). TEP performs periodic estimation and on-line predication of three characteristics of ABR traffic assumed self-similar in nature. In cooperation with TEP, IBA dynamically determines the optimal SD of the CR algorithm, and allocates appropriate bandwidth for four supported services. Finally, simulation and analytic results reveal that, with versatile bandwidth control, IMACS offers various QoS guarantees and maximizes network throughput irrespective of traffic variation.

Abstract in Chinese
Abstract
Acknowledgements
Table of Contents
List of Figures
Acronyms
1.Introduction
2.Intelligent Multiple Access Control System (IMACS)
3.Multiple Access Controller (MACER)
4.Intelligent Bandwidth Allocater (IBA)
4.1.Principle
4.2.Bandwidth Allocation for Reservation Access
4.3.Optimal SD - Precise Throughput Analysis (Poisson Arrivals)
4.3.1.Precise Throughput Analysis for SD = 0
4.3.2.Precise Throughput Analysis for SD = 1
4.3.3.Throughput Comparisons Based on Poisson Arrival
4.4.Optimal SD - Experiment-based Analysis (Self-Similar Traffic)
4.4.1.Satisfaction of QoS for ABR — ABR Throughput
4.4.2.Satisfaction of QoS for Signaling Requests —Blocking Probability
4.4.3.Maximization of Network Throughput
4.4.4.Determination of Optimal SD
5.Conclusions
References

[1]D. Cox, “Wireless Personal Communications: What Is It?” IEEE Pers. Commun., vol. 2, no. 2, Apr. 1995, pp. 20-35.
[2]D. Raychaudhuri, and N. Wilson, “ATM-based Transport Architecture for Multiservices Wireless Personal Comuunication,” IEEE JSAC, vol. 12, no. 8, Oct. 1994, pp. 1401-1414.
[3]N. Abramson, “Multiple Access in Wireless Digital Networks,” Proc. IEEE, vol. 82, no. 9, Sep. 1994, pp. 1360-1369.
[4]M. Arad, and A. Leon-Garcia, “A Generalized Processor Sharing Approach to Time Scheduling in Hybrid CDMA/TDMA,” Proc. IEEE INFOCOM, 1998, pp. 1164-1170.
[5]D. Raychaudhuri, L. French, R. Siracusa, S. Biswas, R. Yuan, P. Narasimhan, and C. Johnston, “WATMnet: A Prototype Wireless ATM System for Multimedia Personal Communication,” IEEE JSAC, vol. 15, no. 1, Jan. 1997, pp. 83-95.
[6]N. Wilson, R. Ganesh, K. Joseph, and D. Raychaudhuri, “Packet CDMA Versus Dynamic TDMA for Multiple Access in an Integrated Voice/Data PCN,” IEEE JSAC, vol. 11, no. 6, Aug. 1993, pp. 870-883.
[7]M. McTiffin, A. Hulbert, T. Ketseoglou, W. Heimsch, and G. Crisp, “Mobile Access to an ATM Network Using a CDMA Air Interface,” IEEE JSAC, vol. 12, no. 5, June 1994, pp. 900-908.
[8]D. Goodman, R. Valenzuela, K. Gayliard, and B. Ramamurthi, “Packet Reservation Multiple Access for Local Wireless Communications,” IEEE Trans. Comm., vol. 37, no. 8, Aug. 1989, pp. 885-890.
[9]J. Kim, and I. Widjaja, “PRMA/DA: A New Media Access Control Protocol for Wireless ATM,” Proc. ICC ’96, Dallas, TX, Jun. 1996, pp. 240-244.
[10]K. Chen, “Medium Access Control of Wireless LANs for Mobile Computing,” IEEE Network, vol. 8, Sep./Oct. 1994, pp. 50-63.
[11]L. Koh, and M. Liu, “A Wireless Multiple Access Control Protocol for Voice-Data Integration,” Proc. Int’l. Conf. Parallel and Dist. Sys., Tokyo, Japan, Jun.. 1996, pp. 206-213.
[12]M. Listanti, F. Mascitelli, and A. Mobilia, “D2MA: A Distributed Access Protocol for Wireless ATM Networks” IEEE INFOCOM, 1998, pp. 315-321.
[13]J. Chen, K. Sivalingam, P. Agrawal, and S. Kishore, “A Comparison of MAC Protocols for Wireless Local Networks Based on Battery Power Consumption” IEEE INFOCOM, 1998, pp. 150-157.
[14]D Bertsekas, and R. Gallager, Data Networks, Second Edition, Prentice Hall, 1992.
[15]B. Paris, and B. Aazhang, “Near-Optimum Control of Multiple-Access Collision Channels,” IEEE Trans. on Comm., vol. 40, no. 8, Aug. 1992, pp. 1298-1309.
[16]R. Garces, and J. Garcia-Luna-Aceves, “A Near-Optimum Channel Access Protocol Based on Incremental Collision Resolution and Distributed Transmission Queues” IEEE INFOCOM, 1998, pp. 158-165.
[17]G. Polyzos, and M. Molle, “A Queueing Theoretic Approach to the Delay Analysis for the FCFS 0.487 Conflict Resolution Algorithm” IEEE Transactions on Information Theory, vol. 39, no. 6, Nov. 1993.
[18]A. Bar-David, and M. Sidi, “Collision Resolution Algorithms in Multistation Packet-Radio Networks,” IEEE Trans. Comm., vol. 37, no. 12, Dec. 1989, pp. 1387-1391.
[19]A. Elwalid, and D. Mitra, R. Wentworth, “A New Approach for Allocating Buffers and Bandwidth to Heterogeneous, Regulated Traffic in an ATM Node,” IEEE JSAC, vol. 13, no. 6, Aug. 1995, pp. 1115-1127.
[20]D. Levine, I. Akyildiz, and M. Naghshineh, “A Resource Estimation and Call Admission Algorithm for Wireless Multimedia Networks Using the Shadow Cluster Concept,” IEEE JSAC, vol. 5, no. 1, Feb. 1997, pp. 1-12.
[21]A. Adas, “Using Adaptive Linear Prediction to Support Real-Time VBR Video Under RCBR Network Service Model,” IEEE JSAC, vol. 6, no. 5, Oct. 1998.
[22]S. Chong, S. Li, and J. Ghosh, “Predictive Dynamic Bandwidth Allocation for Efficient Transport of Real-Time VBR Video over ATM,” IEEE JSAC, vol. 13, no. 1, Jan. 1995, pp. 12-23.
[23]S. El-Henaoui, R. Coelho, and S. Tohme, “A Bandwidth Allocation Protocol for MPEG VBR Traffic in ATM Networks,” IEEE INFOCOM ’96, San Francisco, CA., Mar. 1996, pp. 1100-1107.
[24]P. Narasimhan, and R. Yates, “A New Protocol for the Integration of Voice and Data over PRMA,” IEEE JSAC, vol. 14, no. 4, May 1996, pp. 623-631.
[25]M. Karol, Z. Liu, and K. Eng, “Distributed-Queueing Request Update Multiple Access (DQRUMA) for Wireless Packet (ATM) Networks,” Proc. ICC ’95, Seattle, WA, Jun. 1995, pp. 1224-1231.
[26]III Internal Report, under contract number 88-0023.
[27]J. Lehnert, M. Pursley, “Error Probabilities for Binary Direct-Sequence Spread-Spectrum Communications with Random Signature Sequences,” IEEE Trans. Comm., vol. COM-35, no. 1, Jan 1987, pp. 87-98.
[28]C. Chang, K. Chen, M. You, and J. Chang, “Guaranteed Quslity-of-Service Wireless Access to ATM Networks,” IEEE JSAC, vol. 15, no. 1, Jan. 1997, pp. 106-117.
[29]J. Huang, and T. Berger, “Delay Analysis of the Modified 0.487 Contention Resolution Algorithm,” IEEE Trans. Inform. Theory, IT-31, pp. 264-273.
[30]W. Stallings, “High-Speed Networks TCP/IP and ATM Design Principles,” Prentice Hall, 1998.
[31]J.Beran, “Statistical Methods for Data with Long-Range Dependence,” with discussion, Staatistical Science, 7(4), 1992, pp. 404-427.
[32]I. Norros, “On the Use of Fractional Brownian Motion in the Theory of Connectionless Networks,” IEEE JSAC, vol. 13, no. 6, Aug 1995, pp. 953-962.
[33]J. Beran, R. Sherman, M. S. Taqqa and W. Willinger, ” Long-Range Dependence in Variable Bit Rate Video Traffic,” IEEE Tran. On Communications, vol. 43, no. 2/3/4, Feb./Mar./Apr. 1995, pp. 1566-1579.
[34]A. Erramilli, R. P. Singh, and P. Pruthi, “Chaotic Maps as Models of Packet Traffic,” The Fundamental Role of Teletraffic in the Evolutio of Telecommunications Networks, Proc. Of the 14th ITC, June 1994, pp.329-338, 6-10.
[35]V. Paxson, “Fast, Approxmate Synthesis of Fractional Gaussian Noise for Generating Self-Similar Network Traffic,” ACM/SIGCOM Computer Communication Review, 1997, pp. 5-18.
[36]C. Jung and C. Lin, ”An On-line Self-Constructing Neural Fuzzy Inference Network and Its Applications,” IEEE Trans. On Fuzzy Systems, Vol.6, No. 1, Feb. 1998, pp. 12-32.
[37]M. Yuang, P. Tien, and S. Liang, “Intelligent Video Smoother for Multimedia Communications,” IEEE JSAC, Vol. 15, No. 2, Feb. 1997, pp. 136-146.
[38]P. Tien, M. Yuang, “Intelligent Voice Smoother for Silence-Supressed Voice over Internet”, IEEE JSAC, Vol. 17, No. 1, Jan. 1999, pp. 29-41.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔