|
[1] J. Bruck, R. Cypher and C. T. Ho, Fault-tolerant meshes and hypercubes with minimum numbers of spares, IEEE Trans. Comput. 42 (1993) 1089-1104. [2] R. S. Chou and L. H. Hsu, 1-edge fault-tolerant design for meshes, Parallel Processing Letters 4 (1994) 385-389. [3] S. Dutt and J. P. Hayes, Designing fault-tolerant systems using automorphisms, J. Parallel and Distributed Computing 12 (1991) 249-268. [4] Douglas B. West, {\em Introduction to Graph Theory}(Prentice-Hall, Inc, 1996) [5] R. Gould, {\em Graph Theory}(Benjanmin/Cummings,Menlo Park,CA,1988). [6] F. Harary and J. P. Hayes, Edge fault tolerant in graphs, Networks 23 (1993) 135-142. [7] F. Harary and J. P. Hayes, Node fault tolerant in graphs, Networks 27 (1996) 19-23. [8] J. P. Hayes, A graph model for fault-tolerant computing systems, IEEE Trans. Computers C25 (1976) 875-883. [9] C. N. Hung, Optimal {\it k}-Fault-Tolerant Networks for Token Rings, Dissertation in Computer and information Science, National Chiao Tung University, R.O.C., (1999). [10] H. K. Ku and J. P. Hayes, Optimally Edge fault tolerant trees, Networks 27 (1996) 203-214. [11] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays $\cdot$ Trees $\cdot$ Hypercubes, Morgan Kaufmann Publishers, San Mateo, CA,1992. [12] K. Mukhopadhyaya and B. P. Sinha, Hamiltonian graphs with minimum number of edges for fault-tolerant topologies, Information Processing Letter 44 (1992) 95-99. [13] M. Paoli, W.W. Wong and C.K. Wong, Minimum {\it k}-Hamiltonian graphs II, Journal of Grapg Theory 10 (1986) 79-95. [14] C. J. Shih and K. E. Batcher, Adding multiple-fault tolerant togeneralixed cube networks, IEEE Trans. Parallel and Distributed Systems 5 (1994) 785-792. [15] T. Y. Sung, M. Y. Lin, and T. Y. Ho, Multiple-edge-fault tolerant with respect to hypercubes, IEEE Trans. on Parallel and Distributed Systems 8 (1997) 187-192. [16] T. Y. Sung, Academia Sinica, T. Y. Ho and L. H. Hsu, Optimal {\it K}-Fault-Tolerant Networks for Token Rings, accepted by Journal of Information Science and Engineering. [17] S. Y. Wang, L. H. Hsu and T. Y. Sung, Faithful 1-edge fault tolerant graphs, Information Processing Letter 61 (1997) 173-181. [18] W.W. Wong and C.K. Wong, Minimum {\it k}-Hamiltonian graphs, Journal of Grapg Theory 8 (1984) 155-165.
|