(3.237.178.91) 您好!臺灣時間:2021/03/04 09:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顧鴻壽
研究生(外文):Horng-Show Koo
論文名稱:超導與鐵電材料薄膜的製備及其基本物性之研究
論文名稱(外文):Preparation and Properties of Superconducting and Ferroelectric Materials Thin Films
指導教授:曾俊元
指導教授(外文):Tseung-Yuen Tseng
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:301
中文關鍵詞:高溫超導體薄膜熱裂解法噴霧沉積硝酸鹽-有機溶劑鐵電性薄膜鈣鈦礦石相介電常數漏電流和耗能因子
外文關鍵詞:high-Tc superconducting filmferroelectric filmSpray pyrolysisperovskiterapid thermal annealingleak currentdielectric constantdissipation factor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:274
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文中將討論利用熱裂解法噴霧沉積硝酸鹽-有機溶劑混合液於氧化鎂基板上成長高溫超導體薄膜以及於鍍有鉑及鈦之矽基板上成長鐵電性薄膜o此外,鉈-鋇-鈣-銅-氧化物塊材和摻有銀之鉈-鋇-鈣-銅-氧化物塊材之形成反應機構及其基本物性亦於本文中敘述。
兩種不同鉛鈊含量之高溫超導體鈊-鉛-鍶-鈣-銅-氧化物薄膜經由熱裂解及於845oC,20小時退火處理後,形成c優選方位之單一相三層銅鈊系2223高溫超導薄膜且薄膜由噴霧狀態膜之非晶質相轉變成結晶相鈊-2223, 鈊-2212和鈣鉛氧化物。若噴霧狀態膜與塊材於封閉系統進行退火有助於鈊-2223相之形成;反之,若噴霧狀態膜與塊材於開放系統中進行退火則有利於2212相。從實驗結果得知鈊系塊材源對噴霧狀態膜之揮發損失元素之補償與擴散有助於高溫鈊-2223相之形成且於封閉系統中進行退火處理效應更顯著。最佳電性質之鈊系超導薄膜具有臨界零電阻溫度104K和臨界電流密度1.8x104A/cm2。此外,低溫退火處理對薄膜之超導特性和單一相鈊-2223之形成有正面效應。鈊系超導氧化物薄膜之超導特性是與其所存在之銅價電數(Cu+1, Cu+2)變化有關。從此實驗結果得知鈊系薄膜中Cu+1狀態之比率隨退火處理時間之增加而減少,但薄膜中Cu+2狀態之比率則最初先增加而後些微地減少;至於三價銅(Cu+3)狀態之比率則無顯著地變化。
過量銅、過量鈣以及過量銅鈣對鉈系(鉈-鋇-鈣-銅氧化物)超導體塊材形成機構及其基本物性作一有系統地研究和探討。過量銅和過量鈣對單一相高溫相鉈-2223之形成有正面效應而過量銅鈣則是負面效應。低溫退火處理有助於改善鉈系超導體塊材之超導特性。此外,一系列添加氧化銀(Ag2O)於鉈-鋇-鈣-銅氧化物也被探討。氧化銀之添加有助於三層銅-氧(Cu-O)層之高溫相鉈-2223的形成及超導特性之改善。平板狀顯微結構出現於未添加銀之試片而針狀顯微結構則於添加銀之試片中被觀察到。
添加銀之鉈-鋇-鈣-銅超導體氧化物薄膜經由鋇-鈣-銅-銀前驅薄膜熱裂解以及與鉈系超導體塊材一同進行後續退火處理而製成。當退火溫度選擇於融點溫度(885oC)附近,則在添加銀之鉈-鋇-鈣-銅超導體薄膜中可觀察到由多相之鉈-2212和鉈-2223相轉換成單一相之鉈-2223。添加銀之鉈系超導薄膜試片之臨界零電阻溫度是隨銀之添加量增加而增加;而正常態電阻則是隨銀添加量之增加而降低。銀之添加效應不僅改善鉈系超導薄膜之臨界零電阻溫度和電流密度同時亦有助於單一相之鉈-2223相之低溫形成。最佳電性質之添加銀之鉈系超導薄膜具有臨界零電阻溫度123K和臨界電流密度5.7x104A/cm2。
鐵電性鋇-鍶-鈦-氧化物,鉛-鋯-鈦-氧化物和鍶-鈊-鉭氧化物薄膜利用熱裂解和快速退火熱處理而製成。基板材料則為鍍有鉑及鈦於附有一層熱氧化矽之矽晶圓。起始原料為硝酸鋇、硝酸鍶、硝酸鋯、硝酸鈊、同質丙烷氧化鈦和同質丙烷氧化鉭而溶濟為乙二醇甘油和乙二醇單乙基乙酯。對鋇-鍶-鈦-氧化物薄膜而言,噴膜上刮取之前置粉末熱特性圖顯示一吸熱峰在300-400oC及至1000oC有57.7%重量損失,噴膜顏色由珈啡色非晶質相轉變為白色結晶質相且具有(110) 和 (100)特性峰之鈣鈦礦石相,薄膜之介電常數、漏電流和耗能因子隨退火溫度增加而增加。對鉛-鋯-鈦-氧化物薄膜而言,隨退火溫度增加至500oC,合成薄膜之晶體結構將由非晶質相,多晶相,多晶相和鈣鈦礦石相及最後成單一鈣鈦礦石相。合成薄膜之介電常數、殘留極化和頑矯電場分別為400, 30mC/cm2 和70kV/cm。對鍶-鈊-鉭氧化物薄膜而言,噴膜上刮取之前置粉末熱特性圖顯示一吸熱峰在300-400oC及至1000oC有57.7%重量損失。合成薄膜退火於800oC 30分鐘,其特性顯示介電常數為220、殘留極化為4.0 mC/cm2,飽和極化為8.8mC/cm2,頑矯電場為63 kV/cm。目前,合成薄膜之漏電流最佳值為~10-6A/cm2, 且可由後續低溫退火處理於700oC,10分鐘及Ar 氣氛下,對合成薄膜之漏電流將有所改善。合成薄膜之顯微結構特性及化學組成經由原子力顯微鏡、高解析穿透式電子顯微鏡和誘導藕合電漿原子放射質譜儀觀察而分析。
此一系列結果顯示鐵電性鋇-鍶-鈦-氧化物,鉛-鋯-鈦-氧化物和鍶-鈊-鉭氧化物薄膜可成功地經由熱裂解和快速退火熱處理複合法製成且可作為半導體記憶元件中之主要結構體。
In this dissertation, we would explore the formation behavior and physical characteristics of Tl-Ba-Ca-Cu-O superconducting bulks and its Ag2O doping effect. Similarly, preparation and properties of spray-pyrolyzed superconducting and ferroelectric films would also be investigated. High Tc superconducting films for Bi(Pb)-based and Tl-based compounds were grown on magnesia substrate by spray pyrolysis and post-annealing, while ferroelectric films were formed on Pt(1000A)/Ti(100A)/SiO2(2000A)/Si substrates by spray pyrolysis and rapid thermal annealing.
Highly c-oriented and nearly single-phase Bi-2223 high-Tc Bi-based superconducting films could be achieved for the as-sprayed Bi1.8Pb0.2Sr2Ca2Cu3Oy and Bi2PbSr2Ca2Cu3Oy films with Bi0.8Pb0.2SrCaCu2Oy bulk sources annealed at 845℃for 20h. The as-sprayed films with amorphou-like phases transform into the resultant films with crystalline phases of Bi-2223, Bi-2212 and Ca2PbO4. For preparing Bi-based films, post annealing in the closed system is favorable to the formation of Bi-2223 phase ; on the contrary, that of Bi-2212 phase in the open system. This explains that compensation and diffusion of Bi-based bulk sources into the as-sprayed films help in the formation of Bi-2223 phase and it is more efficient in the closed system. The resultant film shows high critical transition temperature (Tc,zero) of 104K and critical current density (Jc) of 1.8 x 104A/cm2. On the other hand, low temperature ex situ annealing treatment has a positive effect on superconducting properties and the appearance of single-phase high Tc Bi-2223. The superconducting properties are related with the variation of copper valency Cu+1 and Cu+2 in the Bi-based superconducting films.The fraction of Cu+1 state in thin film decreases with increasing annealing duration while Cu+2 ion ratio initially increases and then gradually decreases. No remarkable ratio change occur in the Cu+3 state.
Subsequently, the effects of Ca, Cu, and Ca-Cu richness on the formation behavior and physical characteristics of high-Tc Tl-based superconductors were investigated systematically. Ca and Ca-Cu richness resulted in positive effects on the properties of nearly single-phase Tl2Ba2Ca2Cu3Oy superconductors and in the formation of the appropriate intermediate phases, whereas Cu richness produced a negative effect. Lower post-annealing temperatures of the bulk samples slightly improved the superconducting properties. On the other hand, an effect of Ag2O additive on Tl2Ca2Ba2Cu3O superconducting oxides was also investigated. The doping of the silver oxide was indicated to be favorable to the formation of the three CuO layers with a high-Tc phase Tl2Ca2Ba2Cu3Oy. The diamagnetic property of the samples was also confirmed by the magnetic measurements to become enhanced by doping with silver oxide. The platelike grains of Tl2CaBa2Cu2Oy phase were observed from scanning electron micrographs to be primarily present in the undoped sample, while the amount of the needlelike Tl2Ca2Ba2Cu3Oy grain increased with an increase in the doping amount of Ag2O.
Superconducting films of Ag-doped Tl-Ba-Ca-Cu-O with a varying molar ratio of Ag dopant which ranged from 0 to 0.5 were prepared by spray pyrolysis of Ba-Ca-Cu-Ag-O precursor films on MgO substrate and then post annealed with Tl-bulk sources. Phase transformation of the multiple phases of Tl-2212 and Tl-1223 to a single phase of Tl-2223 was observed in the silver-doped Tl-Ba-Ca-Cu-O supeconducting films annealed at temperatures close to the melting point, 885oC. The critical transition temperature (Tc,R=0) increased and electrical resistivity decreased as the dopant concentration was increased up to 0.5. Doping effect of Ag in the Tl-based film not only improve the critical transition temperature and current density but also favor the formation of single-phase Tl-2223 at lower temperature. Critical transition temperature (Tc, zero) and current density (Jc, 77K, 0Tesla) of the best resultant Tl-based film were shown to be 123K and 5.7x104 A/cm2, respectively.
Combinational processing of spray pyrolysis and rapid thermal annealing treatment had been successfully applied to fabricated barium-strontium-titanate-(Ba0.5Sr0.5)TiO3 , lead-zirconium-titanate-Pb(Zr0.5Ti0.5)O3 , strontium-bismuth-tantalate-SrBi2Ta2O9, ferroelectric thin films on Pt(1000A)/ Ti(100A)/SiO2 (2000A)/Si substrates. Barium nitrate, strontium nitrate, titanium isopropoxide; lead nitrate, zirconium nitrate and strontium nitrate, bismuth nitrtae and tantalum isopropoxide were used as starting materials, while ethylene glycol and ethylene glycol monoethyl ether thus was used as solvent. For (Ba0.5Sr0.5)TiO3 film, thermal characteristics of the precursor powder which scratch from as-sprayed films show a remarkable peaks at around 300-400oC and 57.7% weight loss up to 1000oC. The as-sprayed precursor film with coffee-like color and amorphous-like phase transform into the resultant film with white, crystalline perovskite phase with characteristic peaks (110) and (100). The dielectric constant (er), leakage current (JL) and dissipation factor (tand) of the resultant films increase with increasing annealing temperatures. For Pb(Zr0.5Ti0.5)O3 film, the crystal structure of the films transformed from amorphous, pyrochlore, multiple phases of pyrochlore and perovskite, to a single phase of perovskite as the annealing temperature was increased up to 500oC. The resultant films showed the dielectric constant (er) of 400, remanent polarizations (2Pr) of 30mC/cm2 and coercive field (Ec) of 70kV/cm, respectively. Compositional constituents of the resultant films were analyzed by inductively couple plasma-atomic emission spectroscopy. For SrBi2Ta2O9, film, thermal characteristics of the precursor powder which scratched from the as-sprayed films show a remarkable peak at around 300-400oC and 57.7% weight loss up to 1000oC. The resultant film, which was annealed at 800oC for 30min, showed the dielectric constant (er) of 220, remanent polarizations (2Pr) of 4.0 mC/cm2, saturation polarization (Ps) of 8.8mC/cm2, and coercive field (Ec) of 63 kV/cm, respectively. Leakage current of the resultant film annealed at 800oC for 30min may achieve ~10-6A/cm2, while leakage characteristics of the films would be furthermore improved as the films were post-annealed at temperature 700oC for 10min and Ar atmosphere. Microstructural characteristics and chemical composition of the resultant films were analyzed by atomic force and high resolution transmission electron microscopes and inductively couple plasma-atomic emission spectroscopy.
封面
Abstract(In Chinese)
Abstract(In English)
Acknowledgement
Contents
List of Tables
List of Figure
Chapter 1 Introduction
1-1 Development and Research of Oxide Thin Film
1-2 Deposition Techniques for Oxides Thin Film
1-3 Motivation, Object and Outlook of This Dissertation
Chapter 2 Literature Review and Theory
2-1 Literature Review
2-2 Theory
Chapter 3 Bi(Pb)SrCaCuO Superconducting Thin Film
3-1 Experimental Procedure and Measurement
3-2 Effect of Post-Annealing on Characteristics of Bi-based Superconducting Films
3-3 Effect of Two-Step Annealing on Characteristics of Bi-based Superconducting Films
Chapter 4 Tl-Ba-Ca-Cu-O Superconducting Oxide Bulk
4-1 Formation Mechanism of Tl-Ba-Ca-Cu-O Superconducting Bulks
4-2 Doping Effect of Ag on Tl-Ba-Ca-Cu-O Superconducting Bulks
Chapter 5 TlBaCaCuAgO Superconducting Oxide Thin Film
5-1 Effect of Ag Additive on TlBaCaCuO Superconducting Films
5-2 Annealing Effect of TlBaCaCuAg0.3O Superconducting Films
Chapter 6 Ferroelectric Oxide Thin Films
6-1 Preparation of SBT, PZT, BST Ferroelectric Thin Films
Chapter 7 Conclusions
7-1 Superconducting Thin Films
7-2 Ferroelectric Thin Films
References
References


[01] J. D. Doss, " Engineer''s Guide to High-Temperature Superconductivity ", John Wiley & Sons, 1989.
[02] G. O. Zimmerman, " The potential Utilization of High Temperature Superconductivity " and T. Nakahara, " Development of Superconducting Materials and Impacts on the Social Economy", 1st International Symposium on Superconductivity (ISS''88), Osaka, pp.719-729, 1988.
[03] J. Clarke, D. Quan, M. J. Ferrari, J. J. Kingston, A. H. Miklich and F. C. Wellstood, " High-Tc Thin-Film Microelectronics ", 3rd International Symposium on Superconductivity (ISS''90), Sendai, pp.3-10, 1990.
[04] V. O. Heinen, M. M. Sokoloski, P. R. Aron, K. B. Bhasin, E. G. Wintucky and D. J. Connolly, " N.A.S.A. Space Applications of High-Temperature Superconductors ", 4th International Symposium on Superconductivity (ISS''91), Tokyo, pp.11-15, 1991.
[05] J. G. Wen, S. Mahajan, W. Ito, T. Morishita and N. Koshizuka, '' Direct High-Resolution Electron Microscopy Observations of Sputtered a-Axis Oriented YBa2Cu3O7 Films Prepared by a Self-Template Method on SrTiO3 Substrates " Appl. Phys. Lett., 64[24] pp.3334-3336, 1994
[06] M. Badaye, Y. Kanke, K. Fukushima and T. Morishita, '' In Situ Preparation of YBa2Cu4O8 Thin Films by the Laser Ablation Technique ", Physica C 231 pp.335-340, 1994.
[07] Y. Yoshida, Y. Itoh, I. Hirabayashi, H. Nagai and Y. Takai, " Surface Morphology and Growth Mechanism of YBa2Cu3O7-y Films by Metalorganic Chemical Vapor Deposition Using Liquid Sources ", Appl. Phys. Lett., 69[6] pp.845-847, 1996.
[08] M. R. Rao, E. J. Tarsa, H. Kroemer, A. C. Gossard, E. L. Hu, P. M. Petroff, W. L. Olson and M. M. Eddy, " Molecular Beam Epitaxial Growth of InAs on a TlBaCaCuO Superconducting " , Appl. Phys. Lett., 56[5] pp.490-492, 1990.
[09] G. Kordas and M. R. Teepe, '' Tl2CaBa2Cu2O8+x High Tc Superconductors Processed by the Sol-Gel Technique ", Appl. Phys. Lett., 57[14] pp.1461-1463, 1990.
[10] J. F. Scott and C. A. Paz de Araujo, " Ferroelectric Memories ", Science, 246 pp.1400-1413, 1989.
[11] S. Y. Wu, " A New Ferroelectric Memory Device, Metal-Ferroelectric-Semiconductor Transistor ", IEEE Trans. On Electron Devices ED-21[8] pp.499-504, 1974.
[12] A. I. Kingon, S. K. Streiffer, C. Basceri and S. R. Summerfelt, " High-Permittivity Perovskite Thin Films for Dynamic Random Access Memories ", MRS Bulletin, [7] pp.46-52, 1996.
[13] M. Suzuki, " Review on Future Ferroelectric NonVolatile Memory :FRAM- From the Point of View of Epitaxial Oxide Thin Films ", J. Ceram. Soc. Jpn., 103 pp.1088-1099, 1995.
[14] S. Yamaichi, H. Yabuta, T. Sakuma and Y. Miyasaka, " (Ba+Sr)/Ti Ratio Dependence of the Dielectric Properties for (Ba0.5Sr0.5)TiO3 Thin Films Prepared by Ion Beam Sputtering", Appl. Phys. Lett., 64[13], pp.1644-1646, 1994.
[15] T. Kawahara, M. Yamamuka, A. Yuuki and K. Ono, " Surface Morphologies and Electrical Properties of (Ba,Sr)TiO3 Films Prepared by Two-Step Deposition of Liquid Source Chemical Vapor Deposition", Jpn. J. Appl. Phys., 34[9B] pp.5077-5082, 1995.

[16] V. Mehrotra, S. Kaplan, A. J. Sievers and E. P. Giannelis, '' Ferroelectric Behavior of Pulsed Laser Deposited BaxSr1-xTiO3 Thin Films", J. Mater. Res., 8[6] pp.1209-1212, 1993.
[17] C. Isobe, T. Ami, K. Hironaka, M. Sugiyama, N. Nagel, K. Katori, Y. Ikeda, C. D. Guteben, M. Tanaka, H. Yamoto and H. Yagi, " Characteristics of Ferroelectric SrBi2Ta2O9 Thin Films Grown by Flash MOCVD ", Integ.Ferroelectr., 14[1-4] pp.95-98, 1997.
[18] T. Mihara, H. Watanabe and C. A. Paz de Arujo, " Polarization Fatigue Characteristics of Sol-Gel Ferroelectric Pb(Zr0.4Ti0.6)O3 Thin Film Capacitor ", Jpn. J. Appl. Phys. , 33[7A] pp.3996-4002 , 1994.
[19] S. Wolf, " Silicon Processing for the VLSI Era ", Vol. 1, Lattice Press, 1990
[20] G. L. Messing, S. Zhang and G. V. Jayanthi, " Ceramic powder synthesis by Spray Ptrolysis", J. Am. Ceram. Soc., 76[11] pp.2707-2726, 1993.
[21] W. C. Hinds, " Aerosol Technology ", Wiley, New York, 1989.
[22] G. C. Gardner, " Asymptotic Concentration Distribution of an Involatile Solute in an Evaporating Drop ", Int. J. Heat Mass Transfer, 8 pp.67-668, 1965.
[23] S. K. Friedlander, " Smoke, Dust and Haze : Fundamentals of Aerosol Behavior ", Wiley, New York, 1977.
[24] R. R. Chamberlin and J. S. Skarman, " Chemical Spray Process for Inorganic Films ", J. Electrochem. Soc., 113 pp.86-89, 1996.
[25] M. R. Beasley, " A History of Supercondcutivity ",1st International Symposium on Superconductivity (ISS''88), Osaka, pp.2-15, 1988.
[26] T. P. Orlando and K. A. Delin, " Foundations of Applied Superconductivity ", Addison-Wesley, New York, 1991.
[27] C. Feldman, " Formation of Thin Films of BaTiO3 by Evaporation ", Rev. Sci. Instr., 26[5] pp.463-466, 1955.
[28] J. T. Eavans and R. Womack, " An Experimental 512-bit Nonvolatile memory with Ferroelectric Storage Cell ", IEEE J.Solid-State Circuits, 23 pp.1171-1176, 1988.
[29] O. Auciello and R. Ramesh, Electroceramic Thin Films Part II:Device Applications ", MRS Bulletin, 20[7] pp.29-36, 1996.
[30] W. A. Geidman, '' Progress in Ferroelectric Memory Technology ", IEEE Trans.Ultrasonics, Ferroelectrics and Frequency Control., 38[6] pp.704-711, 1991.
[31] P. Kp. Larsen, R. Cuppens and G. A. C. Spierings, " Ferroelectric Memories ", Ferroelectrics, 128 pp.265-268, 1992.
[32] E. Maxwell, " Isotope Effect in the Superconductivity of Mercury ", Phys. Rev., 78[4] pp.477-477 , 1950.
[33] C. A. Reyolds, B. Serin, W. H. Wright and L. B. Nesbitt, " Superconductivity of Isotopes of Mercury ", Phys. Rev., 78[4] pp.487-487, 1950.
[34] H. Frohlich, " Theory of the Superconducting State : I. The Ground Sate at the Absolute Zero of Temperature ", Phys.Rev., 79[5] pp.845-856, 1950.
[35] B. D. Josephson, " The Discovery of Tunneling Supercurrents ", Rev. Moder. Phys., 46[2] pp.251-254, 1974.
[36] L. Solymar, " Superconductive Tunneling and Applications ", London, Chapman & Hall, 1972.
[37] C. Kittel, " Introduction to Solid State Physics ", 6th, Wiley, New York, 1986.
[38] F. Micheron and C. Lemonon, J. Acoust. Soc. Am., 64 pp.1085-1092 , 1975.
[39] Y. Xu, " Ferroelectric Materials and Their Applications ", North Holland, New York, 1991.
[40] R. Moazzami, " Ferroelctric Thin Film Technology for Semiconductor Memroy ", Semicond. Sci. Technol., 10 pp.375-390, 1995.
[41] G. Burns, " Solid State Physics",
[42] N. W. Ascroft and N. D. Mermin, " Solid State Physics", Holt, Rinehart and Winston, New York, 1976.
[43] R. E. Jones, Jr., P. D. Maniar, R. Moazzami, P. Zurcher, J. Z. Witowski, Y. T. Lii, P. Chu and S. J. Gillespie, " Ferroelectric Non-volatile Memories for Low-voltage, Low-power Application ", Thin Solid Films, 270 pp.584-588, 1995.
[44] M. Ohring, " The Materials Science of Thin Films ", Academic Press, 1992.
[45] H. Hu and S. B. Krupanidhi, " Current-voltage Characteristics of Ultrafine-Grained Ferroelectric Pb(Zr,Ti)O3 Thin Films ", J. Mater. Res., 9[6] pp.1484-1498, 1994.
[46] K. Abe and S. Komatsu, " Epitaxial Growth of SrTiO3 Films on Pt Electrodes and Their Electrical Properties ", Jpn. J. Appl. Phys., 31[9B] pp.2985-2988, 1992.
[47] Y. Fukuda, K. Aoki, K. Numata and A. Nishimura, " Current-voltage Characteristics of Electron-Cyclotron-Resonance Sputtering Deposited SrTiO3 Thin Films ", Jpn. J. Appl. Phys., 33[9B] pp.5255-5258, 1994.
[48] T. Mihara and H. Watanabe, " Electronic Conduction Characteristics of Sol-Gel Ferroelectric Pb(Zr0.4Ti0.6)O3 Thin Film Capacitors:Part I ", Jpn. J. Appl. Phys., 34[10] pp.5664-5673, 1995.
[49] L. Zheng, C. Lin and T. P. Ma, " Current-voltage Characteristic of Asymmetric Ferroelectric Capacitors ", J. Phys. D : Appl. Phys., 29 pp.457-463, 1996.
[50] G. M. Rao and S. B. Krupanidhi, " Study of Electrical Properties of Pulsed Excimer Laser Deposited Strontium Titanate Fims ", J. Appl. Phys., 75[5] pp.2604-2611, 1994.
[51] Y. Shimada, A. Inoue, T. Nasu, Y. Nagano, A. Matsuda, K. Arita, Y. Uemoto, E. Fujii and T. Otsuki, " Time-Dependent Leakage Current Behavior of Integrated Ba0.7Sr0.3TiO3 Thin Film Capacitors during Stressing ", Jpn. J. Appl. Phys., 35[9B] pp.4919-4924, 1996.
[52] T. Kuroiwa, T. Honda, H. Watari and K. Sato, " Electric Properties of SrTiO3 Thin Films Prepared by RF Sputtering ", Jpn. J. Appl. Phys., 31[9B] pp.3025-3028, 1992.
[53] O. Auciello and R. Waser, " Science and Technology of Electroceramic Thin Films ", Kluwer Academic Publishers, pp.223-236 , 1995.
[54] S. B. Desu and I. K. Yoo, " Time-Dependent Dielectric Breakdown in BaTiO3 Thin Films ", J. Electrochem. Soc., 140[9] pp.L133-136 , 1993.
[55] F. H. Chen, H. S. Koo and T. Y. Tseng, " Effect of Ca2PbO4 Additions on the Formation of the 110K Phase in Bi-Pb-Sr-Ca-Cu-O Superconducting Ceramics ", Appl. Phys. Lett., 58[ 6] pp.637-639, 1991.
[56] M. Kanai, T. Kawai, M. Kawai and S. Kawai, " Formation of Bi-Sr-Ca-Cu-O Thin Films by a Laser Sputtering Method ", Jpn. J. Appl. Phys., 27[7] pp.L1293-L1296, 1988.
[57] T. Sata, K. Sakai and S. Tashiro, " Vapor Pressure of Barium and Copper Components in YBa2Cu3O7-x Superconductor Ceramics ", J. Am. Ceram. Soc., 75[6] pp.805-808, 1992.
[58] T. Sata, K. Sakai and S. Tashiro, " Vapor Pressure of Bismuth, Lead and Copper Components in Bi2Sr1.7CaCu2Oy and Bi1.7Pb0.3Sr1.7Ca2Cu3Oy Superconductor Ceramics ", J. Am. Ceram. Soc., 74[4] pp.1445-1448, 1991.
[59] N. Kijima, H. Endo, J. Tsuchiya, A. Sumiyama, M. Mizuno and Y. Oguri," Structural Properties of Two Superconducting Phases in the Bi-Sr-Ca-Cu-O System ", Jpn.J.Appl.Phys., 27[5] pp.L821-L823, 1988.
[60] T.Yoshitake, T.Satoh, Y.Kubo and H.Igarashi, " Preparation of 107K Superconducting Thin Film in Bi-Sr-Ca-Cu-O System by Coevaporation", Jpn. J. Appl. Phys., 27[7] pp.L1262-L1264, 1988.
[61] K. Natori, S. Yoshizawa, J. Yoshino and H. Kukimoto, " Preparation of Pb-Doped Bi-Sr-Ca-Cu-O Superconducting Thin Films Grown by Chemical Vapor Deposition ", Jpn. J. Appl. Phys., 29[6] pp.L930-L932, 1990.
[62] R. B. VanDover, L. F. Schneemeyer, E. M. Gyorgy and J. V. Waszczak, " Low-Field Flux-Flow Resistivity in Bi2.2Sr2Ca0.8Cu2O8+x ", Phys. Rev. B 39[7] pp.4800-4803, 1989.
[63] A. Oota, H. Matsui, M. Funakura, J. Iwaya and J. Maeda, " Critical Current Density and Microstructure of Screen-Printed (Bi,Pb)2Sr2Ca2Cu3Ox Thick Film sandwiched between Ag Substrates ", Appl. Phys. Lett., 63[2] pp.243-245, 1993.
[64] V. V. Metlushko, G. Guntherodt, P. Wagner, H. Adrian, I. N. Goncharov, V. V. Moshchalkov and Y. Bruynseraede, " Enhancement of Critical Current Density by Confinement of Vortices in Bi2Sr2CaCu2Ox Single Crystals and Thin Films ", Appl. Phys. Lett., 63[20] pp.2821-2823, 1993.
[65] H. S. Koo and T. Y. Tseng, " Preparation and Characteristics of Bi-Pb-Sr-Ca-Cu-O Superconducting Films by Spray Pyrolysis and Post-Annealing ", Mater.Chem. and Phys., 56 pp.226-235, 1998.
[66] L. Dimesso, R. Masini, M. L. Cavinato, D. Fiorani, A. M. Testa and C. Aurisicchio, " Effects of Annealing under Reducing Atmosphere on BSCCO 2212 Textured Thick Films Prepared by Partial Melting Techniques ", Physica C 203[3?] pp.403-410, 1992.
[67] G. Balestrino, M. Marinelli, E. Milani, A. Paoletti and P. Paroli, " Effects of Reducing and Oxidizing Thermal Treatments on the Transport Critical Current Density in Epitaxial Bi2Sr3-xCaxCu2O8+y Films ", J. App. Phys., 73[8] pp.3903-3905, 1993.
[68] D. B. Mitzi, L. W. Lombardo, A. Kapitulnik, S. S. Laderman and R. Jacowitz, " Growth and Properties of Oxygen- and Ion-doped Bi2Sr2CaCu2O8+x Single Crystal ", Phys. Rev. B, 41[10] pp.6564-6574, 1990.
[69] T. Takabatake, W. Ye, S. Orimo, H. Kawanaka, H. Fuji, H. Kinoshita and S. Minamigawa, " Enhancement of Superconductivity in Bi2Sr2CaCu2O8+x ", Physica C, 157[2] pp.263-266, 1989.
[70] G. Balestrino, M. Marinelli, E. Milani, M. Montuori, A. Paoletti and P. Paroli, " Effects of Reducing and Oxidizing Thermal Treatments on Epitaxial Bi2.1-xPbxSr2.9-yCayCu2O8+z Films ", J. Appl. Phys., 72[1] pp.191-195, 1992.
[71] H. S. Koo and T. Y. Tseng, " Effect of Low Temperature Annealing on Physical Properties of Bi(Pb)-Sr-Ca-Cu-O Thin Films ", Submitted to J. Mater. Sci. in Electronics.
[72] T. Kaneko, K. Hamada, S. Adachi, H.Yamauchi and S. Tanaka," Synthesis of Tl-based 2234 Superconductors ", J. Appl. Phys. 71[5] pp.2347-2350, 1992.
[73] S. L. Yan, L. Fang, Q. X. Song, J. Yan, Y. P. Zhu, J. H. Chen and S. B. Zhang, " Formation of Epitaxial Tl2CaBa2Cu2O8 Thin Films at Low Temperature in Pure Argon ", Appl. Phys. Lett., 63[13] pp.1845-1847, 1993.
[74] T. L. Aselage, E. L. Venturini and S. B. Van Deusen, " Two-Zone Equilibria of Tl-Ca-Ba-Cu-O Superconductors ", J. Appl. Phys., 75[2] pp.1023-1031, 1994.
[75] C. S. Gopinath, S. Subramanian, M. Paranthaman and A. M. Hermann, " Valence Band Electronic Structure of the Tl2-x-zBa2Ca2+xCu3O10-y System ", Physica C, 214[1?] pp.153-158, 1993.
[76] John A. Deluca, Mary F. Garbauskas, Roger B. Bolon, James G. McMullen, Winifred E. Balz and Pamela L. Karas, " The Synthesis of Superconducting Tl-Ca-Cu-Oxide Film by the reaction of Spray Deposited Ca-Ba-Cu-Oxide Precursors With Tl2O Vapor in a Two-Zone Reactor ", J. Mater. Res., 6[7] pp.1415-1424, 1991.
[77] H. Takei, F. Sakai, M. Hasegawa, S. Nakajima and M. Kikuchi, " Crystal Growth of Tl-based Cuprate Superconductors ", Jpn. J. Appl. Phys., 32[10A] pp.L1403-L1406, 1993.
[78] C. T. Cheung and E. Ruckenstein, " Formation Route of Higher Member Phases from Lower Ones in the Tl-Ca-Ba-Cu-O System ", J. Mater. Res., 5[9] pp.1860-1870, 1990.
[79] T. Kotani, T. Kaneko, H. Takei and K. Tada, " Crystal Growth and Superconductivity of Tl-Ca-Ba-Cu-O System ", Jpn. J. Appl. Phys., 28[8] pp.L1378-L1381, 1989.
[80] M. Murakami, K. Yamaguchi, H. Fujimoto, N. Nakamura, T. Taguchi, N. Koshizuka and S. Tanaka, " Flux Pinning by Non-Superconducting Inclusions in Melt-Processed YBaCuO Superconductors ", Cryogenics, 32[11] pp.930-935, 1992.
[81] H. S. Koo, W. M. Huang, W. H. Lee, T. Y. Tseng, M. Chen and J. R. Lo, " Effect of Ag2O Additive on Microstructure and Superconductivity of the Tl2Ca2Ba2Cu3Oy Compound ", Appl. Phys. Lett. 62[25] pp.3354-3356, 1993.
[82] H. S. Koo, G. C. Tu and T. Y. Tseng, " Preparation and Characterization of Tl-Ba-Ca-Cu-O Superconducting Films by Spray Pyrolysis and Tl-diffusion Technique ", J. of the Am. Ceram. Soc., 77[1] pp.27-32, 1994.
[83] K. Jyodoi, A. Sonoda, S. Yasuyama and A. Ohyoshi, " Doping Effects of Metallic Elements on the Superconductivity in the Tl-Ba-Ca-Cu-O System ", Jpn. J. Appl. Phys., 30[12A] pp.L2021-L2024, 1991.
[84] T. Kaneko, H. Yamauchi and S. Tanaka, " Zero-Resistance Temperature of Tl-based 2223 Superconductor Increased to 127K ", Physica C, 178[4-6] pp.377-382, 1991.
[85] Y. Q. Tang, Z. Z. Sheng, W. A. Lou, Z. Y. Chen, Y. N. Chan, Y. F. Li, F. T. Chan, G. J. Salamo and D. O. Pederson, Supercond. Sci. Technol. 6 (1993)173.
[86] M. R. Presland, J. L. Tallon, R. G. Buckley and N. E. Flower, " General Trends in Oxygen Stoichiometry Effects on Tc in Bi- and Tl- based Superconductors ", Physica C 176[1-3] pp.95-105, 1991.
[87] Y. Shimakawa, Y. Kubo, T. Manako and H. Igarashi, " Variation in Tc and Carrier Concentration in Tl-based Superconductor ", Phys. Rev. B, 40[16] pp.11400-11405, 1989.
[88] R. Sugise, M. Hirabayashi, N. Terada, M. Jo, T. Shimomura and H. Ihara, " The Reversible Reactions in Tl-Ba-Ca-Cu-O System ", Jpn. J. Appl. Phys., 27[12] pp.L2310-L2313, 1988.
[89] N. L. Wu, Y. D. Yao, S. Lee, S. Wong and E. Ruckenstein, " Synthesis of Tl2CanBa2Can+1O6+2n(N=1,2) from Stoichiometric Reactant Mixtures ", Physica C 161[3] pp.302-312, 1989.
[90] K. S. Nanjundaswamy, A. Manthiram and J. B. Goodenough, " Factor Influencing the Stabilization and Tc of Tl2-yBa2Ca2Cu3O10-x ", Physica C , 207[3?] pp.339-346, 1993.
[91] R. Sugise, M. Hirabayashi, N. Terada, M. Jo, T. Shimomura and H. Ihara, " The Formation Process of a New High Tc Superconductor, TlCa4Ba2Cu5Oy With Five Cu-O Layers", Physica C, 157[1] pp.131-134, 1989.
[92] D. L. Schulz, P. A. Parilla, D. S. Ginley, J. A. Voigt and E. P. Roth, " Thick C-axis Textured (Tl,Pb)(Ba,Sr)2Ca2Cu3O9/Ag0.37 Superconducting Tapes by an Ink Spray Pyrolysis Method using a Tl-free Precursor", Appl. Phys. Lett., 65[7] pp.2472-2474, 1994.
[93] A. Umezawa, G. W. Crabtree, J. Z. Liu, H. W. Weber, W. K. Kwok, L. H. Nunez, T. J. Moran, C. H. Sowers, and H. Claus, " Enhanced Oriented Magnetization currents due to Fast Neutron Irradiation in Single-Crystal YBa2Cu3O7-y ", Phys. Rev. 36[B13] pp.7151-7154, 1987.
[94] W. L. Holstein, " Thermodynamics of the Volatilization of Tl2O from Tl2O, Tl4O3 and Tl2O3 ", J.Phys.Chem., 97[16] pp.4224-4230, 1993.
[95] J. A. Deluca, P. L. Karas, J. E. Tkaczyk, P. J. Bednarczyk, M. F. Garbauskas, C. L. Briant and D. B. Sorensen, " The Preparation Tl-Ba-Ca-Cu-Oxide Superconducting Films via the Reaction of Silver-Containing Spray Deposited Ca-Ba-Cu-Oxide Vapor ", Physica C, 205[1?] pp.21-31, 1993.
[96] H. S. Koo and T. Y. Tseng, " Promotion of phase transformation and single-phase formation in silver-doped Tl-Ba-Ca-Cu-O superconducting thin films", Accepted by J.Mater. Res.
[97] H. K. Singh, A. K. Saxena and O. N. Srivastava," The Synthesis of Tl-Ba-Ca-Cu-O(Agy) HTSC Films Through Spray Pyrolysis and an Evaluation of the Influence of Silver on the Critical Current Density", Supercond. Sci. Technol., 8 pp.448-454, 1995.
[98] D. Kumar, M. Sharon, R. Pinto, P. R. Apte, S. P. Rai, S. C. Purandare, L. C. Gupta and R. Vijayraghvan, " Large Critical Currents and Improved Epitaxy of Laser Ablated Ag-Doped YBa2Cu3O7-y Thin Films ", Appl. Phys. Lett., 62[26] pp.3522-3524, 1993.
[99] H. S. Koo and T. Y. Tseng," Preparation and physical properties of superconducting films in the Tl-Ba-Ca-Cu-Agx-O system prepared by spray pyrolysis and Tl-diffusion", submitted to J.Mater.Sci.
[100] H. S. Koo, J. R. Lo, T. Y. Tseng and C. S. Lin, " Formation behavior of High-Tc Tl-based superconductors", Accepted by Jpn. J. Appl. Phys.
[101] Dhananjay Kumar, M. Sharon, R. Pinto, P. R. Apte, S. P. Pai, S. C. Purandare, C. P. D''Souza, L. C. Gupta and R.Vijayaraghavan, " Silver Doping and Its Influence on the Oxygenation during in situ Growth of YBa2Cu3O7-y Thin Film ", J. Appl. Phys., 76[2] pp.1349-1351, 1994.
[102] H. K. Singh, A. K. Saxena and O. N. Srivastava, " Effect of Ag doping on the transition temperature and critical current density of Hg1-xTlxBa2Ca2Cu3O8+x films fabricated through spray pyrolysis", Physica C, 273[3?] pp.181-188, 1997.
[103] Y. Wu, E. G. Jacobs, R. F. Pinizzotto, R. Tsu, H. Y. Liu, S. R. Summerfelt and B. E. Gnade, " Microstructural and Electrical Characterization of Barium Strontium Titanate Thin Films ", Mat. Res. Soc. Symp. Proc. 361 pp.269-274, 1995, Mat. Res. Soc.
[104] P. Bhattacharya, K. H. Park and Y. Nishoka, " Control of Grain Structure of Laser-Deposited (Ba,Sr)TiO3 Films to Reduce Laekage Current ", Jpn. J. App. Phys., 33[9B] pp.5231-5234, 1994.
[105] E. N. Bunting, G. R. Shelton and A. S. Creamer, J. of the Am. Ceram. Soc., 30 pp.114, 1947.
[106] H. Tabata, H. Tanaka, T. Kawai and M. Okuyama, " Strained SrTiO3/BaTiO3 superlattices formed by laser ablation technique and their high dielectric properties", Jpn. J. Appl. Phys., 34[2A] pp.544-547, 1995.
[107] H. Tabata, H. Tanaka and T. Kawai, " Formation of Artificial BaTiO3/SrTiO3 Superlattices using Pulsed Laser Deposition and Their Dielectric Properties ", Appl. Phys. Lett., 65[15] pp.1970-1972, 1994.
[108] L. L. Hencb and J. K. West, " Principle of Electronic Ceramics ", Published in Canada, 1990.
[109] T. Eimori, " A Newly Designed Planar Stacked Capacitor Cell with High Dielectric Constant Film for 256 Mbit DRAM", IEDM Tech.Dig. pp.361-364, 1993.
[110] T. Horikawa, N. Mikami, T. Makita, J. Tanimura, M. Kataoka, K. Sato and M. Nunoshita, " Dielectric properties of (Ba,Sr)TiO3 thin films deposited by RF sputtering ", Jpn.J.Appl.Phys., 32[9B] pp.4126-4130, 1993.
[111] C. S. Hwang, S. O. Park, H. J. Cho, C. S. Kang, H. K. Kang, S. I. Lee and M. Y. Lee " Deposition of Extremely Thin Film (Ba,Sr)TiO3 for Ultra Large Scale Integrated Dynamic Random Access Memory Application ", Appl. Phys. Lett., 67[19] pp.2819-2821, 1995.
[112] T. Kawahara, M. Yamamuka, T. Makita, J. Naka, A.Yuuki, N. Mikami and K. Ono, " Step Coverage and Electrical Properties of ( Ba,Sr)TiO3 Films Prepared by Liquid Source Chemical Vapor Deposition Using TiO(DPM)2 ", Jpn. J. Appl. Phys., 33[9B] pp.5129-5134 , 1994.
[113] H. S. Koo and T. Y. Tseng, " Preparation and Electrical Properties of Spray-Pyrolyzed Ferroelectric (Ba0.5Sr0.5)TiO3 Thin Films ", to be submitted.
[114] J. O. Olowolafe, R. E. Jones Jr., A. Campbell, R. I. Hegde, C. J. Mogab and R. B. Gregory, " Effects of Anneal Ambient and Pt Thickness on Pt/Ti and Pt/Ti/TiN Interfacial Reaction " , J. Appl. Phys., 73[4] pp.1764-1772, 1993
[115] K. Sreenivas, I. Reaney, T. Maeder, N. Setter, C. Jagadish and R. G. Elliman, " Investigation of Pt/Ti Bilayer Metallization on Silicon for Ferroelectric Thin Film Integration ", J. Appl. Phys., 75[1] pp.232-239, 1994.
[116] K. Sreenivas, M. Sayer and P. Garret, " Properties of DC Magnetron-Sputtered Lead Zirconate Titanate Thin Films " Thin Solid Films, 172[2] pp.251-267, 1989.
[117] B. A. Tulltle, R. W. Schwartz, D. H. Doughty and J. A. Voigt, " Characterization of Chemically Prepared PZT Thin Films ", in Ferroelectric Thin Films, edited by E. R. Myers and A. I. Kingon (Mater.Res.Soc.Proc. 200, Pittsburgh, PA, 1990) pp363-368.
[118] S. D. Bernstein, Y. Kisler, J. M. Wahl, S. E. Bernacki and S. R. Collins, " Effects of Stoichiometry on PZT Thin Film Capacitor Properties ", in Ferroelectric Thin Films II, edited by A. I. Kingon, E. R. Myers and B. Tuttle (Mater.Res.Soc.Proc. 243, Pittsburgh, PA, 1990) pp.373-378.
[119] H. C. Ling, A. M. Jackson, M. F. Yan and W. W. Rhodes, " Effect of PbO Evaporation on the Composition and Dielectric Properties of PbO-MgO-Nb2O5 Based Dielectrics " , J. Mater. Res., 5[3] pp.629-639 , 1990.
[120] W. L. Warren, B. A. Tuttle, P. J. McWhorter, F. C. Rong and E. H. Poindexter, " Identification of Paramagnetic Pb+3 Defects in Lead Zirconate Titanate Ceramics " , Appl. Phys. Lett., 62[5] pp.482-484, 1993.
[121] Y. Shimamoto, K. K. Abdelghafar, H. Miki and Y. Fujisaki, " H2 Damage of Ferroelctric Pb(Zr,Ti)O3 Thin-Film Capacitors- The Role of Catalytic and Adsorptive Activity of the Top Electrode ", App. Phys. Lett., 70[23] pp.3096-3098, 1997.
[122] I. K. Yoo, S. B. Desu and J. Xing, " Correlations among Degradation in Lead Zirconate Titanate Thin Film Capacitors ",Ferroelectric Thin Films III, edited by E. R. Myers, B. A. Tuttle S. B. Desu and P. K. Larsen (Mater.Res.Soc.Proc. 310, Pittsburgh, PA, 1993) pp.165-177.
[123] E. G. Lee, D. J. Wouters, G. Willems and H. E. Maes, " Influence of Zr/Ti Ratios on the Deformation in the Hysteresis Loop of Pb(Zr,Ti)O3 Thin Film Capacitors ", Appl. Phys. Lett., 70[18] pp.2404-2406, 1997.
[124] J. F. Scott and C. A. Paz de Araujo, " Ferroelectric Memories ", Science 246[4936] 1400-1405, 1989.
[125] Reza Moazzami, " Topical Review:Ferroelectric Thin Film Technology for Semiconductor Memory", Semicond.Sci.Technol., 10 375-390, 1995.
[126] K. Miura and M. Tanaka, " The Effect of Bi Ions Substituting at the Sr Site in SrBi2Ta2O9 ", Jpn. J. Appl. Phys., 37[5A] 2554-2558, 1998.
[127] Z. G. Zhang, J. S. Liu, Y. N. Wang, J. S. Zhu, F. Yan, X. B. Chen and H. M. Shen, '' Fatigue Characteristics of SrBi2Ta2O9 Thin Films Prepared by Metalorganic Decomposition ", Appl. Phys. Lett., 73[6] 788-790, 1998.
[128] Y. Ito, M. Ushikubo, S. Yokoyama, H. Matsunaga, T. Atsuki, T. Yonezawa and K. Ogi, '' New Low Temperature Processing of Sol-Gel SrBi2Ta2O9 Thin Films ", Inter. Ferroelectric., 14[1-4] 123-126, 1997
[129] M. S. Tsai and T. Y. Tseng, " Conduction Mechanism and Temperature-Dependent Current-Voltage in (Ba,Sr)TiO3 Thin Films" , J. Electrochem. Soc., 145[8] 2853-2860, 1998
[130] S. I. Ohfuji and M. Itsumi, " Effects of Annealing in Ar Gas on Ferroelectric Properties of SrBi2Ta2O9 Thin Films ", Jpn. J. Appl. Phys., 37[5A] 2559-2564, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 鄧潔(民82)。「從實務的角度談如何經營公共圖書館內的視聽部門」。教學科技與媒體,11期﹐19-27頁
2. 童敏惠(民86)。「大學圖書館視聽服務新嘗試-以台大圖書館多媒體服務中心為例」。大學圖書館,1卷4期﹐80-93頁。
3. 鄧潔(民82)。「從實務的角度談如何經營公共圖書館內的視聽部門」。教學科技與媒體,11期﹐19-27頁
4. 童敏惠(民86)。「大學圖書館視聽服務新嘗試-以台大圖書館多媒體服務中心為例」。大學圖書館,1卷4期﹐80-93頁。
5. 梁朝雲(民81)。「學習資源中心自動化之考量及其未來扮演的角色」。視聽教育雙月刊,34卷1期﹐16-20頁。
6. 梁朝雲(民81)。「學習資源中心自動化之考量及其未來扮演的角色」。視聽教育雙月刊,34卷1期﹐16-20頁。
7. 李世忠(民79)。「視聽中心的未來走向」。視聽教育雙月刊,31卷5期﹐23-26頁。
8. 李世忠(民79)。「視聽中心的未來走向」。視聽教育雙月刊,31卷5期﹐23-26頁。
9. 沈亞梵(民82)。「視聽教學媒體的認識與應用」。教學科技與媒體,10期﹐40-42頁。
10. 沈亞梵(民82)。「視聽教學媒體的認識與應用」。教學科技與媒體,10期﹐40-42頁。
11. 朱則剛(民81)。「美國教學科技發展過程初探﹕領域名稱的更迭與理念的擴展」。教學科技與媒體,創刊號﹐22-29頁。
12. 朱則剛(民81)。「美國教學科技發展過程初探﹕領域名稱的更迭與理念的擴展」。教學科技與媒體,創刊號﹐22-29頁。
13. 朱則剛(民79)。「在師範學院設立教學資源中心的理念與規劃」。視聽教育雙月刊,31卷4期﹐25-29頁。
14. 朱則剛(民79)。「在師範學院設立教學資源中心的理念與規劃」。視聽教育雙月刊,31卷4期﹐25-29頁。
15. 王健華(民82)。「從教學科技派典變遷談媒體服務觀念與內容的革 新」。教學科技與媒體,4期﹐22-29頁。
 
系統版面圖檔 系統版面圖檔