(3.238.7.202) 您好!臺灣時間:2021/03/02 01:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐淦發
研究生(外文):Hsu Gann Fa
論文名稱:砷化鋁鎵/砷化鎵Npn型異質接面雙極性電晶體之製造及電性研究
論文名稱(外文):Fabrication and Characterization of AlGaAs/GaAs Npn Heterojunction Bipolar Transistiors
指導教授:李建平李建平引用關係
指導教授(外文):Chien-Ping Lee
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:80
中文關鍵詞:砷化鋁鎵/砷化鎵異質接面雙極性電晶體射頻
外文關鍵詞:AlGaAs/GaAsHeterojunction Biploar transistorRadio Frequency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要


在本論文中, 我們研究兩種不同集極結構的Npn-型砷化鋁鎵/砷化鎵異質接面雙極性電晶體 (HBT) 的直流和微波特性, 其中一種是傳統的n-型低濃度摻雜集極結構, 另一種是改良的n+/n-/p+複合型濃度摻雜彈道電子收集(ballistic collection)集極結構。

我們發展出一種製程技術, 不需要額外的蝕刻光罩或任何複雜的製程不步驟, 就可以製造有保護平台(passivation ledge)的異質接面雙極性電晶體。這種製程技術使得在製造小面積元件時不會損失直流電流增益。

相對於沒有保護平台的元件, 實驗結果顯示有保護平台的元件有較好的直流電流增益(βmax=50~100 v.s.βmax=~20)。由於極大的電場出現在集極-次集極接面, 改良的n+/n-/p+複合型濃度摻雜彈道電子收集集極結構的元件顯現較低的崩潰電壓。此外, 在高功率散逸的操作條件下, 元件的接面溫度逐漸升高而這種元件自熱的效應嚴重減損元件的直流電流增益。顯示在設計砷化鋁鎵/砷化鎵異質接面雙極性電晶體時不能忽略散熱處理的問題。

砷化鋁鎵/砷化鎵異質接面雙極性電晶體在晶片上的微波特性量測, 是用HP8510A網路分析系統(Network Analyzer system)及串接微探針(Cascade Micro-Probes)來完成。Interconnect Pad 的寄生電容被以一種稱為"冷量測" (Cold Measurement)的方法來扣除。T-模型小訊號等效電路的元件參數, 是以從微波量測所得到的S-參數來萃取。在傳統的n-型低濃度摻雜集極結構異質接面雙極性電晶體 (sample 2703) 的表現上: 元件(3x15μm2, lm2703) 正實可以操作到最高截止頻率ft ~20GHz, 最大振盪頻率fmax ~16GHz; 元件(8x10μm2, lm2703) 的ft ~20GHz, fmax ~8GHz。關於改良的n+/n-/p+複合型濃度摻雜彈道電子收集集極結構異質接面雙極性電晶體(sample 2794)方面: 元件 (3x15μm2, lm2794)正實可以操作到ft ~20GHz ,fmax ~7GHz; 而元件(8x10μm2, lm2794) 在20GHz時的共射集小訊號電流增益H21超過5dB 而fmax~6GHz。

從元件參數萃取的結果, 我們發現太大的寄生電容和寄生電感嚴重影響元件的微波表現。而在(sample 2794)上的元件普遍都有較低fmax, 這是因為這些元件上有較差的基極歐姆接點(base Ohmic contact)衍生額外的接點電容Cbx ( )。在本研究中, 改良的n+/n-/p+複合型摻雜彈道電子收集集極結構所應產生對ft 的提升並不如預期的明顯, 這是因為在這些元件中的歐姆接點電阻都比較大造成較大R-C 充電時間。

Abstract


In this thesis we studied the D.C. and microwave characteristics of two types of Npn heterojunction bipolar transistors (HBT's). One has a conventional n- collector structure and the other has a modified n+/n-/p+ ballistic collection collector structure.

We developed a fabrication technology for HBT's can be fabricated with a passivation ledge without needing an additional etching mask or any complicated process. This technique enables fabrication of scaled-down devices without sacrificing device's D.C. current gain.

Comparing to devices without a ledge, the experimental results show that devices with a passivation ledge exhibit much better D.C. current gain.(βmax=50~100 v.s.βmax=~20) Because of the extremely high electric field appearing in p+/n+ collector-subcollector junction, the modified n+/n-/p+ collector structure exhibits a lower breakdown voltage than the n- collector structure. Under high power density condition, the transistor operates at elevated junction temperature and the "self-heating" effect seriously degrades device's current gain. Indicating the "thermal management" problem can not be ignored in AlGaAs/GaAs HBT's design.

AlGaAs/GaAs HBT's on wafer microwave characteristics measurements were performed by an HP-8510A Network Analyzer system and Cascade Micro-Probes. The parasitic pad capacitances were extracted by a "Cold Measurement" method. A T-model small-signal equivalent circuit was used to extract the devices' parameters from the measured S-parameters. Fairly good results were obtained, for the conventional collector HBT's (sample lm2703), device (3x15μm2, lm2703) demonstrates an ft of ~20GHz and an fmax of ~16GHz and device (8x10μm2, lm2703) demonstrates an ft of ~20GHz and an fmax of ~8GHz. For the ballistic collector structure HBT's (sample 2794), device (3x15μm2, lm2794) demonstrates an ft of ~20GHz and an fmax of ~7GHz and device (8x10μm2, lm2794) demonstrates a common-emitter current gain H21 of 5dB at 20GHz and an fmax of ~6GHz.
From the parameter extraction results, we can find that the large parasitic pad capacitance and inductance significantly degrade devices' microwave performance. The lower power gain fmax of devices on sample lm2794 is due to the poor base ohmic contacts imposing an additional capacitance Cbx in those devices ( ). In this study, the benefit of the ballistic electron transport on ft is not so clear. This is due to the fact that the ohmic contact resistances of devices on sample lm2794 are larger than those devices on sample lm2703 resulting in a larger R-C charging time.

Contents

Abstract (Chinese)
Abstract (English)
Acknowledgement
Contents
Figure Captions

Chapter 1 Introduction
1.1 Overview
1.2 Organization of the thesis
References to chapter 1

Chapter 2 Fabrication Technologies for AlGaAs/GaAs Hetrojunction Bipolar Transistors
2.1 Introduction
2.2 Epitaxial layers
2.3 Fabrication processes
Appendix A
References to chapter 2

Chapter 3 AlGaAs/GaAs HBT's DC Performance Measurement and Discussion
3.1 Introduction
3.2 Gummel plot
3.3 Breakdown voltages (BVceo and BVcbo)
3.4 Ic-Vce characteristic
References to chapter 3

Chapter4 T-Model Small Signal Equivalent Circuit and Small Signal Properties of AlGaAs/GaAs HBT's
4.1 Introduction
4.2 T-model small signal equivalent circuit
4.3 Cold measurement
4.4 Small signal parameters extraction
4.5 Small signal current gain H21and power gains (U/MSG/MAG)
4.6 High frequency performance of the fabricated HBT's
References to chapter 4
Chapter5 Conclusions




Vita

References to Chapter 1


[1.1] Tsukasa Yoneyama, "Millimeter-waver research activities in Japan", IEEE Trans. On Microwave Theory and Techniques, vol. 46, no. 6, pp. 727-733, 1998.
[1.2] Anatoly A. Grinberg, Michael S. Shur, Russell J. Fischer, Hadis Morkoc, "An investigation of the effect of the graded layers and tunneling on the performance of AlGaAs/GaAs heterojunction bipolar transistor, IEEE Trans. On Electron Devices, vol. 31, no. 12, pp. 1758-1764, 1984
[1.3] Juntao Hu, Dimitris Pavlidis, Kazutaka Tomizawa," Monte carlo studies of the effect of emitter junction grading on the electron transport in InAlAs/InGaAs heterojunction bipolar transistors", IEEE Trans. On Electron Devices, vol. 39, no. 6, pp. 1273-1281, 1992
[1.4] Jiro Yoshida, Mamoru Kurata, Kohei Morizuka, Akimichi Hojo," Emitter -base bandgap grading effects on AlGaAs/GaAs heterojunction bipolar transistor characteristics", IEEE Trans. On Electron Devices, vol. 32, no. 9, pp. 1714-1720, 1985
[1.5] Kenji Kurishima, Hiroki Nakajima, Shoji Yamahata, Takashi Kobayashi, Yutaka Matsuoka," Effects of a compositionally-graded InGaAs base in abrupt-emitter In/InGaAs heterojunction bipolar transistors", Jpn. J. Appl. Phys. vol. 34, Pt.1, no. 2B, pp. 1221-1227, 1995
[1.6] William Liu, Damian Costa, James S. Harris, "Current gain of graded AlGaAs/GaAs heterojunction bipolar transistors with and without a base quasi-electric field", IEEE Trans. On Electron Devices, vol. 39, no. 11, pp. 2422-2429, 1992
[1.7] T. Ohishi, Y. Abe, H. Sugimoto, K. Ohtsuka, T. Matsui, Electron. Lett. vol. 26, pp. 392, 1990
[1.8] Shin-ichi Tanaka, Hidenori Shimawaki, Kensuke Kashara, Kazuhiko Honjo," Characterization of current-induced degradation in Be-doped HBT's based in GaAs and InP", IEEE Trans. On Electron Devices, vol. 40, no. 7, pp. 1194-1201, 1993
[1.9] Kenji Kurishima, Hiroki Nakajima, Shoji Yamahata, Takashi Kobayashi, Yutaka Matsuoka," Growth design and performance of InP-base heterostructure bipolar transistors", IEICE Trans. On Electron. vol. E78-C, no. 9, pp. 1171-1181, 1995
[1.10] Hiroki Nakajima, Masaaki Tomizawa, Tadao Ishibashi," Monte carlo analysis of the space-charge effect in AlGaAs/GaAs ballistic collection transistors (BCT's) under high current injection", IEEE Trans. On Electron Devices, vol. 39, no. 7, pp. 1558-1563, 1992
[1.11] Tadao Ishibashi, Hiroki Nakajima, H. Ito, S. Yamahata, Y. Matsuoka, "Suppressed base-widening in AlGaAs/GaAs ballistic collection transistors," 48th Device Research Conference, VIIB-3, 1990
[1.12] Yutaka Matsuoka, Shoji Yamahata, Satoshi Yamaguchi, Koichi Murata, Eiichi Sano, Tadao Ishibashi," IC-oriented self-aligned high performance AlGaAs/GaAs ballistic collection transistors and their applications to high speed ICs", IEICE Trans. Electron., vol. E76-C, no. 9, September, pp. 1392-1401, 1993

References to Chapter 2

[2.1] Hiroki Nakajima, Nasaaki Tomizawa, Tadao Ishibashi, " Monte Carlo analysis of the space-charge effect in AlGaAs/GaAs ballistic collection transistors (BCT's) under high current injection", IEEE Trans. On Electron Devices, vol.39, no 7, 1558-1563, 1992
[2.2] Hin-Fai Chau, Juntao Hu, Dimitris Pavlidis, Kazutaka Tomiazwa, " Breakdown-speed consideration in AlGaAs/GaAs heterojunction bipolar transistors with special collector designs", IEEE Trans. On Electron Devices, vol. 39, no. 12, pp2711-2719, 1992
[2.3] Juntao Hu, Kazutaka Tomizawa, Dimitris Pavlidis, "Transient Monte Carlo analysis and application to heterojunction bipolar transistor switching", IEEE Trans. On Electron Devices, vol. 36, no. 10, pp2138-2145, 1989
[2.4] William Liu, James S. Harris, Jr., "Diode ideality factor for surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors", IEEE, Trans. On Electron Devices, vol. 39, no 12, pp. 2726-2731, 1992
[2.5] T. Kitano, S. lzumi, H. Minami, T. Ishikawa, K. Sato, T. Sonoda, and M. Otsubo, " Selective wet etching for highly uniform GaAs/AlGaAs heterostructure field effect transistors", J. vac. Sci. Technol. B 15(1), pp. 167-170, 1997
[2.6] C. Juang, K. J. Kuhn, R. B. Darling," Selective etching of GaAs and AlGaAs with citric acid/hydrogen peroxide solutions", J. Vac. Sci. Technol. B 8 (5), pp. 1122-1124, 1990
[2.7] Sadato Hongo, Tohru Sugiyama, Yasuhiko Kuriyama, Norio Iizuka, Masao Obara," Highly reproducible fabrication technology for passivated AlGaAs/GaAs heterojunction bipolar transistors with Pt/Ti/Pt/Au base electrodes", Jpn. J. Appl. Phys. Vol. 34, part 1, no. 2B, pp. 1181-1184, 1995
[2.8] Tohru Sugiyama, Yasuhiko Yuriyama, Norio Iizuka, Kunio Tsuda, Kouhei Morizuka, Masao Obara, " High Fmax AlGaAs/GaAs HBTs with Pt/Ti/Pt/Au base contacts for DC to 40 GHz broadband amplifiers", IEICE, Trans. Electron, vol. E78-C, pp. 944-948, 1995
[2.9] Hin-Fai Chau, Grant Wilcox, Wenliang Chen, Marcel Tutt, Timothy Henderson," High -power high efficiency X-band AlGaAs/GaAs heterojunction bipolar transistor with undercut collectors", IEEE Microwave and Guided Wave Letters, vol. 7, no. 9, pp. 288-290, 1997
[2.10] Kazuhiro Mochizuki, Kiyoshi Ouchi, Kohji Hirata, Tomornori Tranoue, Tohru Oka , Hiroshi Masuda, " Polycrystal isolation of InGaP/GaAs HBT's to reduce collector capacitance", IEEE Electron Device Letters, vol. 19, no. 2, pp. 47-49, 1998
[2.11] Hin-Fai Chau, Grant Wilcox, Wenliang Chen, Marcel Tutt, Timothy Henderson," High-power high efficiency X-band AlGaAs/GaAs heterojunction bipolar transistor with undercut collectors", IEEE Microwave and Guided Wave Letters, vol. 7, no. 9, pp. 288-290, 1997
[2.12] W. Liu, D. Hill, H. -F. Chau, J. Sweder," Laterally etched undercut (LEU) technique to reduce base-collector capacitance in heterojunction bipolar transistors", IEEE GaAs IC Symp. , pp. 167-170, 1995
[2.13] Y. Miyamoto, J. M. M. Rios, A. G. Dentai, S. Chandrasekhar, " Rduction of base-collector capacitance by undercutting the collector and subcollector in GaInAs/InP DHBT's ", IEEE Electron Device Letters. Vol. 17, no. 3, pp. 97-99, 1996

References to Chapter 3


[3.1] William Liu, James S. Harris, Jr., "Diode ideality factor for surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors", IEEE, Trans. On Electron Devices, vol. 39, no 12, pp. 2726-2731, 1992
[3.2] W. S. Lee, D. Ueda, T. Ma, Y. C. Pao, I. S. Harris, Jr., "Effect of emitter-base spacing on the current gain of AlGaAs/GaAs heterojunction bipolar transistors", IEEE Electron Device Lett., vol.10, pp.200-202, 1989.
[3.3]James J. Chen, Guang-Bo Gao, Jen-Inn Chyi, Hadis Morkoc, "Breakdown behavior of GaAs/AlGaAs HBT's", IEEE, Trans. On Electron Devices, vol.36, no.10, pp. 2165-2172, 1989.
[3.4]William Liu, " The interdependence between the collapse phenomen and the avalanche breakdown in AlGaAs/GaAs power heterojunction bipolar transistors", IEEE Trans. On Electron Devices, vol.42, no. 4, pp. 591-597, 1995.
[3.5] William Liu, Ali Khatibzadeh, "The collapse of current gain in multi-finger heterojunction bipolar transistors: its substrate temperature dependence, instability criteria, and modeling", IEEE, Trans. On Electron Devices, vol. 41, no 10, pp. 1698-1707, 1994.
[3.6] G. B. Gao, Z. F. Fan, H. Morkoc, "Negative output differential resistance in AlGaAs/GaAs heterojunction bipolar transistors", Appl. Phys. Lett., vol. 61, pp. 198-200, 1992.


References to Chapter 4


[4.1] Apostolos Samelis , Dimitris Pavlidis, " DC to high frequency HBT-model parameter evaluation using impedance block conditioned optimization", IEEE. Trans. On Microwave Theory and Techniques, vol. 45, no. 6, pp. 886-897, 1997
[4.2] Damian Costa,William U. Liu, James S. Harris," Direct extraction of the AlGaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit", IEEE. Trans. On Electron Devices, vol. 38, no. 9, pp. 2018-2024,1991
[4.3] Bin Li, Sheila Prasad, Li-Wu Yang, S. C. Wang, " A semi-analytical parameter extraction procedure for HBT equivalent circuit", IEEE. Trans. On Microwave Theory and Techniques, vol. 46, no. 10, pp. 1427-1435, 1998
[4.4] J. M. M. Rios, Leda N. Lunardi, S. Chandrasekhar, Y. Miyamoto, "A self-consistent method for complete small signal parameter extraction of the InP-base heterojunction bipolar transistors HBT's ", IEEE Trans. On Microwave Theory and Techniques, vol. 45, no. 1, pp. 39-45, 1997
[4.5] David R. Pehlke, Dimitris Pavlidis, " Evaluation of the factors determining HBT high frequency performance by direct analysis of S-parameter data", IEEE. Trans. On Microwave Theory and Techniques, vol. 40, no. 12, pp. 2367-2373, 1992
[4.6] W. Liu, D. Costa, James Harris, " A simplified model for the distributed base contact impedance in heterojunction bipolar transistors", Solid State Electronics, vol. 35, no. 4, pp. 547-552, 1992
[4.7] Solon Jose Spiegel, Dan Ritter, R. A. Hamm, A. Feygenson, P. R. Smith, " Extraction of the InP/GaInAs heterojunction bipolar transistor small-signal equivalent circuit", IEEE Trans. On Electron Devices, vol. 42, no. 6, pp.1059-1064, 1995
[4.8]W. K. Chen, Active network and feedback amplifier theory, New-York, Mc. Graw Hill, 1980.
[4.9]K. Kurokawa, "Power waves and the Scattering matrix", IEEE Trans. On Microwave Theory and Techniques, MTT-13, pp.194-202, 1965.
[4.10] Madhu S. Gupta, "Power gain in feedback amplifiers, a classic revisted", IEEE Trans. On Microwave Theory and Techniques, vol. 40, no. 5, pp.864-879, 1992.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 蘇諼(1995)。「讀者研究的趨勢」, 中國圖書館學會會報,55,51-55。
2. 蘇諼(1995)。「讀者研究的趨勢」, 中國圖書館學會會報,55,51-55。
3. 謝焰盛(1994)。「從資訊需求與使用研究之多重典範衝突談讀者需求導向對圖書館的影響」, 圖書與資訊學刊,10,38-44。
4. 鄭麗敏(1992)。「人文學者搜尋資訊行為的探究」, 教育資料與圖書館學,29(4):388-410。
5. 謝焰盛(1994)。「從資訊需求與使用研究之多重典範衝突談讀者需求導向對圖書館的影響」, 圖書與資訊學刊,10,38-44。
6. 鄭麗敏(1992)。「人文學者搜尋資訊行為的探究」, 教育資料與圖書館學,29(4):388-410。
7. 葉乃靜(1996)。「從量化走向質化的圖書館學與資訊科學研究」 資訊傳播與圖書館學,2(4),73-82。
8. 葉乃靜(1996)。「從量化走向質化的圖書館學與資訊科學研究」 資訊傳播與圖書館學,2(4),73-82。
9. 傅雅秀(1997)。「資訊尋求的理論與實證研究」,圖書與資訊學刊,20,13-28。
10. 傅雅秀(1997)。「資訊尋求的理論與實證研究」,圖書與資訊學刊,20,13-28。
11. 傅雅秀(1988)。「水產資訊利用」, 中國圖書館學會會報,43,135-148。
12. 傅雅秀(1988)。「水產資訊利用」, 中國圖書館學會會報,43,135-148。
13. 林麗雲(民74)。「逢甲大學學生利用圖書館狀況之調查報告」,逢甲學報,18,139-184。
14. 林麗雲(民74)。「逢甲大學學生利用圖書館狀況之調查報告」,逢甲學報,18,139-184。
15. 沈寶環,傅雅秀(民83)。「圖書館與資訊利用」,中國圖書館學會會報,52,9-14。
 
系統版面圖檔 系統版面圖檔