跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姚建
研究生(外文):Jian Yao
論文名稱:運動電荷能量損失之表面效應
論文名稱(外文):Effects of Surface Excitations on the Energy Loss of Moving Charge
指導教授:桂正楣
指導教授(外文):Cheng-May Kwei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:87
語文別:英文
論文頁數:55
中文關鍵詞:能量損失表面電漿激發
外文關鍵詞:Energy LossSurfacePlasma Excitation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中, 我們導出平行於固體表面運動的帶電粒子的非彈性倒數平均自由徑( DIMFP )的計算公式. 這個DIMFP可以分為體項及表面項, 對於在固體外行進的電子, 只有表面項對電子與固體之間的非彈性交互作用有貢獻. 對於在固體內部行進的電子, 表面電漿激發及體電漿激發都出現, 且發現表面效應侷限於一個由真空─固體介面向兩側延伸的表面層. 我們使用廣義 Drude 介電函數來描述非彈性交互作用. 利用鏡象反射模型 ( SRM ) 及半古典無限大壁壘模型, 我們發現了能量與動量守恆的限制是相當重要的. 此外, 我們也導出對固體以局域型介電函數描述的解析公式.
我們也討論了先前的非彈性散射對目前的能量損失機率分佈的影響, 且導出阻止本領( Stopping Power )的解析表示式. 結果發現此記憶效應對較小的阻尼係數的介電質與低能的入射粒子有較明顯的效應.
A new, general expression for the differential inverse mean path (DIMFP) of an electron moving parallel to the interface of two semi-finite media is derived. This DIMFP can been divided up into a bulk and a surface term. For the electron moving outside the solid, only the surface term contributed to the inelastic interaction between the solid and the external electron. For the electron moving inside the solid, both surface and bulk excitation exist. It is found that surface effect is restricted to a surface layer extending on both sides of the vacuum-solid interface. The extended Drude dielectric function (Kwei et al. 1993) describes the inelastic scattering in solid very well. Using specular reflection model (SRM) and semi-classical infinite barrier model (SCIBM), we found the momentum and energy conservation restriction is important and the analytic formulae under the local dielectric function approximation is derived.
Attention is paid to the influence of previous inelastic scattering on the instantaneous interaction between the external electron and the solid. The analytic expression of stopping power is derived. This “ memory “ is found to be important for the dielectric with the small damping constant.

CONTENTS
Figure Captions
Chapter 1 Introduction
Chapter 2 Energy Loss of Charged Particles Moving
Parallel to a Solid Surface
2.1 The Fictitious Surface Charge Method
2.2 Basic Formulae
2.1.1 Charge Moving in a Bulk Solid
2.1.2 Charged Particle in Vacuum Moving Parallel to the
Interface of two Media
2.3 Charged Particle Moving in Vacuum Parallel to the Surface of
a Solid
2.4 Charged Particle inside a Solid Moving Parallel to the Solid
Surface
2.5 Formulae without the Energy-Momentum Conservation
Restriction
2.5 Calculated Results
Chapter 3 The Influence of Previous Scattering Event
on the Subsequent Scattering Event
3.1 Basic formulae
3.2 Numerical Calculation Results
Chapter 4 Conclusions
References

REFERENCES
Abramowitz M and Stegun I (eds) (1972) Handbook of Mathematical Functions
(New York: Dover).
Aizpurua J, Rivacoba A, Apell S P (1996) Phy. Rev. B 54 2901.
Bohr N (1913) Phil. Mag. 25 16.
Bethe H A (1930) Ann. Phys. (Leipzig) 5 325.
Bethe H A (1968) Intermediate Quantum Mechanics, Benjamin, New York.
Chen Y F and Kwei C M (1996) Surf. Sci 364 131.
Dolinski W (1988), Mróz S and Zagórski (1988) Surf. Sci. 200 361.
Garica-Molina R, Gras-Marti A and Ritchie R H (1985) Phys. Rev. B 31 121.
Gergely G (1983) Vacuum 33 89.
Gergely G (1986a) Scanning 8 203.
Gergely G (1986b) Surf. Interface Anal. 3 201.
Gruzza B, Achad B and Pariset C (1986) J.Phys.D: Appl.Phys. 19 137.
Gruzza B and Pariset C (1991) Surf. Sci. 247 408.
Henrich J (1973) Phy. Rev. B 8 1316.
Howie A (1983) Ultramicroscopy 11 141.
Jablonski A (1985) Surf. Sci. 151 166.
Jardin C, Gergely G and Gruzza G (1992) Surf. Interface Anal. 19 5.
Juaristi J I, Garc’a de Abajo and Echenique P M (1996) Phy. Rev. B 53 13 839.
Kwei C M, Chen Y F, Tung C J and Wang J P (1993) Surf. Sci. 293 202.
Kwei C M, Wang C Y, and Tung C J (1998) Surf. Interface Anal. 26 682.
Lesiak B, Jablonski A, Prussak Z and Mrozek P (1989) Surf. Sci. 223 213.
Lindhard J and Scharff H (1953) K.Dan. Vidensk. Selsk. Mat.-Fys. 27 1.
Lindhard J (1954) K.Dan. Vidensk. Selsk. Mat.-Fys. 28 8.
Nazarov V U (1997) Phy. Rev. B 56 2198.
Otto A (1967) Phys. Status Solidi 22 401.
Powell C J (1978) Quatitative Surface Analysis of Materials (ed: Mcintyre N S)
ASTM Special Technical Publication 643 p.5
Ritchie R H (1957) Phy. Rev. 106 874.
Ritchie R H and Eldridge H B (1962) Phys. Rev. 126 1935.
Ritchie R H and Marusak A L (1966) Surf. Sci. 4 234.
Ritchie R H and Howei A (1977) Philios. Mag. 36 463.
Ritchie R H, Hamm R N, Tunner J E, Weight H A and Bloch W E (1991) in Physical and Chemical Mechanisms in Molecular Radiation Biology Eds. W. A. Glass and M. N. Varma, Plenum, New York, p99.
Rivacoba A, Zabala N and Echenique P M (1992) Phy. Rev. Lett. 69 3362.
Smith D Y and Shiles E (1978) Phy. Rev. B 17 4689.
Tung C J, Chen Y F, Kwei C M and Chou T L (1994) Phy. Rev. B 49 16 684.
Turner N H (1988) Anal. Chem. 60 337.
Wagner D (1966 ) Z. Naturforsch Teil A 21 634.
Wang Y N and Liu W K (1996) Phy. Rev. B 54 636.
Yubero F and Tougaard S (1992) Phy. Rev. B 46 2486.
Yubero F, Sanz J M, Ramskov B and Tougaard S (1996) Phy. Rev. B 53 9719.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文