跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王健俞
研究生(外文):Jiann-Yu Wang
論文名稱:快速熱退火及複晶矽處理對複晶矽介電質之影響
論文名稱(外文):The Effects of Rapid Thermal Annealing and Bottom Polysilicon Treatments on Interpoly Dielectrics
指導教授:張國明
指導教授(外文):Kow-Ming Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
中文關鍵詞:快速熱退火複晶矽介電質複晶矽處理氮化
外文關鍵詞:RTApolyoxideinterpoly dielectricpolysilicon treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中,我們有系統的討論氮氣快速退火對化學氣相沈積的氧化層在複晶矽介電質的特性影響,研究結果得知,原本結構較為鬆散的氧化層經過氮氣快速熱退火後有著較佳的電性,而隨著溫度的升高特性也隨之改善,但若時間太長,特性有劣化的現像產生。
其次,我們研究底層複晶矽處理對複晶矽介電層的影響,首先,我們利用氮氣快速退火來改善複晶矽的品質,經過處理後成長的氧化層有著較佳的特性,最後,我們利用成長一層薄多晶矽層在底層上, 利用多晶矽較平滑的表面來成長氧化層,可得知,長在薄多晶矽上的介電層有著較高的崩潰電荷, 較高的崩潰電場。

In this thesis, we investigate the effects of rapid post-deposition annealing (PDA) on the characteristics of TEOS deposited polyoxides ~ 11.0nm, were systematically studied with respect to PDA temperature, time, and temperature ramp rate. The results indicate that the higher annealing temperature got the better electrical characteristics and a suitable choice of PDA time will be important to obtain high quality polyoxides. To improve oxide quality, long PDA time treatment should be avoided as possible.
Finally, we study the effects of several pre-oxidation treatment technologies, including pre-oxidation nitrogen RTA, oxidizing thin recrystallized-polysilicon film on poly-1, oxidizing thin amorphous film on poly-1 on polyoxides. The obtained polyoxide has the desirable electrical characteristics of lower leakage current and higher breakdown field than those of polyoxide as-grown. At the same time, the oxides grown on treated-polysilicon have lower electron trapping rates and larger charge-to-breakdown, both attributable to their smoother polyoxide/poly-1interface than those of polyoxides as-grown.

ENGLISH ABSTRACT.................................................................................................................................I
CHINESE ABSTRACT............................................................................................................................... II
CONTENTS ...............................................................................................................................................III
TABLE CAPTIONS ....................................................................................................................................V
FIGURE CAPTIONS .................................................................................................................................VI
CHAPTER 1 ................................................................................................................................................1
INTRODUCTION ........................................................................................................................................1
1.1 BACKGROUND ....................................................................................................................................1
1.2 MOTIVATION .......................................................................................................................................2
1.3 MEASUREMENT ..................................................................................................................................3
1.3.1 Breakdown Field (Ebd) .......................................................................................................................3
1.3.2 Critical Electric Field (C.E.F) ..............................................................................................................3
1.3.3 Charge-to-Breakdown level (Qbd) ......................................................................................................4
1.3.4 Barrier Height (Fb) ..............................................................................................................................4
1.3.5 Charge Trapping Centroid (Xt) and Trapped Charge Density (Qt) ......................................................4
1.3.6 Gate Voltage Shifts (DVg) ..................................................................................................................5
1.3.7 Atomic Force Microscope (AFM) .......................................................................................................5
1.3.8 SIMS Analysis ....................................................................................................................................5
1.4 ORGANIZATION OF THIS THESIS .....................................................................................................5
CHAPTER 2 ................................................................................................................................................7
IMPROVEMENTS OF THE CVD-DEPOSITED TEOS POLYOXIDE CHARACTERISTICS WITH NITROGEN RAPID THERMAL ANNEALING............................................................................................................................7
2.1 INTRODUCTION ..................................................................................................................................7
2.2 EXPERIMENTAL DETAILS AND MEASUREMENT ..........................................................................8
2.2.1 Rapid Thermal Processing System ......................................................................................................8
2.2.2 Sample Preparation .............................................................................................................................9
2.3 RESULTS AND DISCUSSION .............................................................................................................10
2.3.1 The Characteristics of Polyoxides Grown by TEOS Oxides and Thermal Oxides ..............................10
2.3.2 The Effect of Nitrogen RTA Temperature on the CVD-deposited TEOS Oxide Characteristics .........11
2.3.3 The Effect of RTN2 Duration on CVD-deposited TEOS Oxides........................................................13
2.2.4 The Effects of RTN2 Temperature Ramp Rate on CVD-deposited Polyloxides .................................15
2.4 SUMMARY ..........................................................................................................................................15
CHAPTER 3 ...............................................................................................................................................17
THE EFFECT OF BOTTOM POLYSILICON TREATMENT ON DILUTE O2 - GROWN POLYOXIDES .17
3.1 INTRODUCTION ................................................................................................................................17
3.2 SAMPLE PREPARATION AND MEASUREMENTS ...........................................................................18
3.3 RESULTS AND DISCUSSION ............................................................................................................19
3.3.1 The Characteristics of Bottom Polysilicon RTN2 on Dilute O2-grown Polyoxides ............................19
3.3.2 The Characteristics of the Dilute O2-grown Polyoxide by Recrystallized-polyslilcon Method ...........21
3.3.3 The Characteristics of Polysilicon Oxide Grown on Thin Amorphous Silicon Deposited on Polysilicon ..22
3.4 SUMMARY ..........................................................................................................................................23
CHAPTER 4 ...............................................................................................................................................25
CONCLUSION ...........................................................................................................................................25
REFERENCES ............................................................................................................................................27

[1] Willian D. Brown, "Nonvolatile Semiconductor Memory Technology", p27
[2] Betty Prince, "Semiconductor Memories," second edition, p.182
[3] Willian D. Brown, "Nonvolatile Semiconductor Memory Technology", p126
[4] J. C. Lee, C. Hu, "Polarity asymmetry of oxide grown polycrystalline silicon", IEEE Transaction on Electron Devices. Vol.35, p.1063, 1988
[5] L. Faraone, "Thermal SiO2 films on the n+-polycrystalline silicon : electrical conduction and breakdown," IEEE Transaction on Electron Devices. Vol.33. p1785, 1986
[6] P. A. Heimann, S. P. Murarka, T.T.Sheng, "Electrical conduction and breakdown in oxides of polycrystalline silicon and their collection with interface texture," J. Appl. Phys. , vol.53, p.6240,1982
[7] J. Ahn, W. Ting, "High-quality MOSFET's with ultrathin LPCVD gate SiO2," IEEE Electron Device Lett., vol.13, p.186,1992
[8] M. Lenzlinger, E. H. Snow: J. Appl. Phys., vol.40, p.278-283,1982
[9] Z. H. Liu, P. T. Lai : "Characterization of Charge Trapping and High-Field Endurance for 15nm Thermally Nitrided Oxides", IEEE Transaction on Electron Devices., Vol.38, p.344, 1991
[10] C. Cobianu, O. Popa, "On the electrical conduction in the dielectric layer," IEEE Electron Device Lett., vol.14, p.213, 1993
[11] F. S. Becher, D. Pawlik, " Low pressure deposition of doped SiO2 by pyrolysis of tetraethylorthosilicate (TEOS) " J. Vac. Sci. Technol. B, vol.5 p.1555,1987
[12] C. H. Kao, C. S. Lai " The TEOS CVD Oxide Deposited on Phosphorus In Situ Doped Polysilicon with Rapid Thermal Annealing in N2O," IEEE Transaction on Electron
[13] J. H. Klootwijk, M. H. H. Weusthof , " Improvements of deposited interpolysilicon dielectric characteristics with RTP N2O-anneal", IEEE Electron Device Lett., vol. 17, p.358, 1996
[14] H. Hwang, W. Ting, " Electrical and reliability characteristics of the ultra thin oxynitride prepared by rapid thermal processing in N2O," in IEDM Tech. Dig., p.421,1990
[15] F. S. Becker, D. Pawlik, "Low-pressure deposition of high-quality SiO2 films by pyrolysis of tetraethylorthosilicate" J. Vac. Sci. Technol., vol. B5, p1555, 1987
[16] C. H. Kao, C. S. Lai " The TEOS CVD Oxide Deposited on Phosphorus In Situ Doped Polysilicon with Rapid Thermal Annealing," IEEE Electron Device Lett., vol.44, p.526, 1997
[17] J. Lee, C. Hu, "Comparison between CVD and thermal oxide dielectric integrity," IEEE Electron Device Lett., vol EDL-7, p.506, 1986
[18] R. M. Andersson and D. R. Kerr : J. Appl. Phys. 48 (1977) 4834
[19] E.A. Irene, E. Tierney, "A viscous flow model to explain the apperarance of high density thermal SiO2 at low oxidation temperature, " J, Electrochem. Soc., vol.129, P.2594, 1982
[20] N. A. Dumin, D. J. Dumin "Effects of nitrogen Incorporation During Growth on Thin Oxide Wearout and Breakdown", Solid-State Electronics, vol.38, p1161, 1995
[21] C. Y. Chen, M. J. Jeng, "Rapid Thermal postoxidation anneal engineering in thin gate oxides with Al gates," IEEE Transaction on Electron Devices., vol. 45, p247, 1998
[22] R. M. Anderson and D. R. Kerr, "Evidence for surface asperity mechanisn of conductivity in oxide grown on polycrystalline silicon," J. Appl. Phys., vol.48 p.4834, 1977
[23] C. Y. Wu and C.F. Chen: J. Appl. Phys. Lett., vol.50, p1167, 1987
[24] L. Faraone, R. D. Vibronek, "Characterization of thermally oxidized n+-polycrystalline silicon," IEEE Transaction on Electron Devices., vol.32, p577,1985
[25] L. Faraone, G. Harbeke,"Surface roughness and electrical conduction of oxide/polysilicon interfaces," J. Electrochem.Soc., vol.133, p1410,1986
[26] E. A. Irene, E. Tierny :J. Electrochem.Soc. vol.127,p705,1980
[27] T. Kubota, K. Ando : IEEE/IRPS p.12, 1996
[28] S. Holland and C. Hu, "Correlation between breakdown and process induced positive charge trapping in thin thermal SiO2," J. Electrochem. Soc., vol. 133, p.1705, 1986

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 熱制動微閥與微流量感測器之研究
2. 紅外線感測器之低溫製程研究
3. 利用NH3電漿處理來改善低介電常數材料HSQ在銅連線上的應用
4. 利用N2+離子佈植處理複晶矽/非晶矽薄膜對矽化鈷熱穩定性改善之研究
5. 以感應耦合式電漿系統成長之超薄氮氧化矽薄膜的電特性與可靠度研究
6. 利用同步輻射技術分析大氣常壓電漿輔助化學氣相沉積製備非晶銦鎵鋅氧薄膜之特性研究
7. 利用氮中性粒子束處理非晶氧化銦鎵鋅薄膜電晶體在閘極偏壓不穩定性研究
8. 使用氮氣中性粒子束電漿處理之大氣常壓電漿輔助化學氣相沉積製備高效能銦鎵鋅氧薄膜電晶體研究
9. 使用氮氣中性粒子束電漿處理於大氣常壓電漿輔助化學氣相沉積製備氧化鎵鋅薄膜電晶體之研究
10. 使用微波退火處理大氣常壓電漿輔助化學氣相沉積製備非晶銦鎵鋅氧薄膜電晶體之研究
11. 大氣壓電漿輔助化學氣相沉積系統之氫電漿處理氧化銦鎵鋅薄膜電晶體與偏壓變溫不穩定特性研究
12. 低溫製程技術處理於低溫多晶矽薄膜電晶體及大氣常壓電漿輔助化學氣相沉積製備銦鎵鋅氧薄膜電晶體之探討
13. 可利用石墨烯最佳化金半接面歐姆接觸之特性研究
14. 利用大氣常壓電漿輔助化學氣相沉積和中性粒子束系統雙重氣體處理應用於高效能銦鎵鋅氧薄膜電晶體研究
15. 使用氧氣中性粒子束電漿處理之大氣常壓電漿輔助化學氣相沉積製備非晶銦鎵鋅氧薄膜電晶體研究