(18.210.12.229) 您好!臺灣時間:2021/02/26 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃正壹
研究生(外文):Cheng-I Hwang
論文名稱:應用分解濾波演算法的新等化技術及相關同步方法
論文名稱(外文):Novel Equalization Techniques Employing the Decomposition Filtering Algorithm and Associated Synchronization Methods
指導教授:林大衛林大衛引用關係
指導教授(外文):David W. Lin
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:87
中文關鍵詞:分解演算法盲目等化器盲目分解等化器時序回復器載波回復器
外文關鍵詞:decomposition algorithmblind equalizerblind decomposition equalizertiming recoverycarrier recovery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一類使用分解演算法的盲目等化器以及一個結合此盲目等化
器、載波回復器以及時序回復器的接收器架構。在等化器的部份,降低
複雜度與訓練係數是兩個重要的主題。分解演算法(decomposition
algorithm)能簡化等化器在計算迴旋積分部份的複雜度約一半。首先,
我們證明了使用分解演算法架構的最小均方演算法(LMS)在適當的步階常
數(stepsize)的設定下,可以保證其平均值收斂。我們也比較了它與使
用線性濾波器(linear filter)的最小均方演算法間的差異。
接著,我們將分解演算法應用到使用Godard成本函數(cost function)
的盲目等化器。一些簡化的相關的演算法也被提供,包括能消除係數調
整所需乘法的符號(sign)演算法、增進硬體效率的延遲(delayed)演算
法、降低分解演算法乘法複雜度的輸入輸出等比例縮放
(input/output scalling)演算法以及移去不為零平均值的直流消除
(dc removed)演算法等等。
我們研究了這類盲目分解演算法的收斂性質,證明了在無限長的等化器
與一些關於傳輸信號及通道特性的設定下,它的表現曲線(performance
surface)只有二組區域最小值。其中一組等化後的通道響應(channel
response)全為零,這是不希望的特性;另一組則具有完全等化的效果,
可經由適當的初值設定來達成。而對於相關的簡化演算法而言,我們無
法得到符合的成本函數,事實上也不存在。經由檢查它們的調整係數等
式,我們也獲得了一些對於簡化演算法收斂性質的了解。
我們提出了一個結合載波回復、時序回復以及低複雜度盲目分解等化器
的接收器架構,同時也提供了一個開始的程序,可以將接收器帶進最後
的運作。由於我們設計的等化、載波回復以及時序回復調整方法彼此間
關性相當低,整個接收器的穩定度相當高。
應用於高速數位用戶迴路(HDSL)並使用最小均方演算法的判定回饋等化
器(DFE)的硬體設計已經完成。經由Verilog與Opus VLSI CAD的模擬,我
們證實了這些設計可行。相關的電路配置圖(Layout)設計也已經完成並
製造成積體電路(IC)。經由些微的更變,我們也提出一個可應用到本論
文所提演算法的相關硬體設計。
We present a blind equalizer which based on the decomposition
algorithm and a receiver structure with joint the kind of
blind equalizer, carrier recovery, and timing recovery. Two
important topics in equalizer design are its complexity and its
training. The decomposition FIR filtering technique reduces
the complexity of the convolution operation in the equalizer
to about a half. We find the convergence property of the LMS
algorithm based on decomposition algorithm. The algorithm
converges in mean behavior by setting suitable stepsize. We
also compare the convergence properties between it and the LMS
algorithm with linear filter.
A family of blind equalizers which utilize the decomposition
algorithm is provided. The prototype algorithm in this
equalizer family employs the popular Godard cost function.
Several simplified algorithms are derived, including sign
algorithm which eliminates multiplication in coefficient
adaptation, delayed algorithm which increases hardware
efficiency, input/output scaling algorithm which reduces the
complexity of multiplication, and DC removed algorithm which
eliminates DC value of transmitted signal.
We also study their convergence properties. For the prototype
algorithm, we show that, in the limit of an infinitely long
equalizer and under mild conditions on signal constellations
and channel characteristics, there are only two sets of local
minima on the performance surface. One of the sets is
undesirable and is characterized by a null equalized channel
response. The other corresponds to perfect equalization which
can be reached with proper equalizer initialization. For the
simplified algorithms, we are unable to find corresponding
cost functions. Indeed, there may not exist corresponding
cost functions. Some understanding of their convergence
behaviors is obtained via examination of their adaptation equations.
We describe a receiver structure with joint timing recovery,
carrier recovery and low-complexity blind decomposition
equalizer. And we describe a startup sequence to bring the
receiver into full operation. The adaptation algorithms for
equalization, carrier recovery, and timing recovery are
relatively independent, resulting in good operational
stability of the overall receiver.
The DFE hardware design based on LMS algorithm for HDSL has
been accomplished. It is verified with the Verilog and Opus
VLSI CAD tools. Layout design of the equalizer chip has been
taped out for foundry fabrication. The hardware design of
blind decomposition algorithm also is finished by minor
modification of the above design.
封面
Abstract(Chinese)
Abstract(English)
Acknowledgment
Contents
Figure Captions
Chapter 1 Introduction
1.1 Blackbody Radiation
1.2 Infrared Radiation
1.3 Overview of QWIPs
1.4 Organization of The Thesis
References for chapter 1
Chapter 2 Experimental Techniques
2.1 Molecular Beam Epitaxy
2.2 Device Process
2.3 Measurements of the QWIPs Characteristics
Chapter 3 Fundamentals of Quantum Well Infrared Photodetectors
3.1 Absorption of Intersubband Transitions
3.2 Dark Current of QWIPs
3.3 Responsivity
3.4 Noise Sources of QWIPs
3.5 Detectivity
3.6 Self Consistent Model of QWIPs
3.7 Summary
References for chapter 3
Chapter 4 Doping Effect on Normal Incident InGaAs/GaAs Long-Wavelength Quantum Well Infrared Photodetectors
4.1 Introduction
4.2 Sample Growth
4.3 Results and Discussions
4.4 Summary
References for chapter 4
Chapter 5 Normal Incident Two Color Voltage Tunable InGaAs Quantum Well Infrared Photodetectors
5.1 Introduction
5.2 Experiments
5.3 Results and Discussion
5.4 Summary
References for chapter 5
Chapter 6 Non-Uniform Quantum Well Infrared Photodetectors
6.1 Introduction
6.2 Experiments
6.3 Discussion
6.4 Summary
References for chapter 6
Chapter 7 Self Assembled Quantum Dot Infrared Photodetectors
7.1 Introduction
7.2 Growth of Quantum Dots
7.3 Experiments and Discussions
7.4 Summary
References for Chapter 7
Chapter 8 Conclusions
Vita
Publication List
1. B. Widrow and M. E. Hoff, Jr.,''Adaptive switching
circuits," IRE WESCON Conv. Rec., pt. 4, pp. 96--104, Aug.
1960.
2. E. Eweda., ''Analysis and design of a signed regressor LMS
algorithm for stationary and nonstationary adaptive
filtering with correlated Gaussian data," IEEE Trans.
Circuits Syst., vol. 37, no. 11, pp. 1367--1374, Nov.
1990.
3. R. Y. Chen and C. L. Wang, ''On the optimum step size for
the adaptive sign and LMS algorithm," IEEE Trans. Circuits
Syst., vol. 37, no. 6, pp. 836--840, June 1990.
4. C. L. Wang and R. Y. Chen, ''Optimun design of hard-switch
dual sign algorithm for adaptive echo cancellation," IEEE
Trans. Signal Process., vol. 41, no. 5, pp. 1970--1074,
May 1993.
5. G. Long, F. Ling and J. G. Proakis, ''The LMS algorithm
with delayed coefficient adaptation," IEEE Trans.
Acoustics Speech Signal Process., vol. 37, no. 9,
pp. 1397--1405, Sep. 1989.
6. Y. Sato, ''A method of self-recovering equalization for
multilevel amplitude-modulation system," IEEE Trans.
Commun., vol. 23, pp. 679--682, June 1975.
7. D. N. Godard, ''Self-recovering equalization and carrier
tracking in two-dimensional data communication system,"
IEEE Trans. Commun., vol. 28, pp. 1867--1875, Nov. 1980.
8. A. Benveniste and M. Goursat, ''Blind equalizers," IEEE
Trans. Commun., vol. 32, pp. 871--882, Aug. 1984.
9. G. Picchi and G. Prati, ''Blind equalization and carrier
recovery using a stop and go decision-directed algorithm,"
IEEE Trans. Commun., vol. 35, pp. 877--887, Sep. 1987.
10. V. Weerackody and S. A. Kassam, ''Dual-mode type algorithms
for blind equalization," IEEE Trans. Commun., vol. 42,
pp. 22--28, Jan. 1994.
11. A. Benveniste, M. Goursat, and G. Ruget, ''Robust
identification of a nonminimum phase system: blind
adjustment of a linear equalizer in data communications,"
IEEE Trans. Automat. Control, vol. 25, pp. 385--399, June
1980.
12. O. Macchi and E. Eweda, ''Convergence analysis of self-
adaptive equalizers," IEEE Trans. Informat. Theory},
vol. 30, pp. 162--176, Mar. 1984.
13. Z. Ding and R. A. Kennedy, ''On the whereabouts of local
minima for blind adaptive equalizers," IEEE Trans.
Circuits Syst. II,} vol. 39, pp. 119--123, Feb. 1992.
14. V. Weerackody, S. A. Kassam, and K. R. Laker, ''Sign
algorithms for blind equalization and their convergence
analysis," Circuits Syst. Signal Processing, vol. 10,
no. 4, pp. 394--431, 1991.
15. V. Weerackody, S. A. Kassam, and K. R. Laker, ''A simple
hard-limited adaptive algorithm for blind equalization,"
IEEE Trans. Circuits Syst. II, vol. 39, pp. 482--485,
July 1992.
16. S.-G. Chen, Y.-A. Kao, and K.-Y. Tsai, ''A new efficient
LMS adaptive filtering algorithm," IEEE Trans. Circuits
Syst. II, vol. 43, no. 5, pp. 372--378, May 1996.
17. C.-I Hwang, T.-C. Tang, D. W. Lin, and S.-G. Chen, ''An
efficient FSE/DFE-based HDSL equalizer with new adaptive
algorithms," IEEE Int. Conf. Commun. Conf. Record,
pp. 288--292, 1994.
18. N. K. Jablon, ''Joint blind equalization, carrier recovery,
and timing recovery for high-order QAM signal
constellations," IEEE Trans. Signal Processing, vol. 40,
pp. 1383--1397, June 1992.
19. S.-G. Chen and R.-J. Tsay, ''A novel fast filtering
algorithm and its implementation," in Proc. EUSIPCO,
pp. 945--948, Brussels, August 1992.
20. S. Haykin, ''Adaptive filter theory," 3rd ed., Prentice
Hall, Englewood Cliffs, NJ, 1995.
21. G. J. Foschini, ''Equalizing without altering or detecting
data," AT\&T Tech. J., vol. 64, no. 8, pp. 1885--1911,
October 1985.
22. F. R. Gantmacher, ''The Theory of Matrices," Chelsea, New
York, 1977.
23. Cheng-I Hwang, and David W. Lin, ''Joint low-complexity
blind equalization, carrier recovery, and timing
recovery with application to cable modem transmission,"
IEICE Trans. Commun., vol. E82-B, no. 1, pp. 120--128,
January 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔