跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 11:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林柏村
研究生(外文):B. C. Lin
論文名稱:由矽磊晶到極平整之超薄氧化層製作
論文名稱(外文):From low temperature Si epitaxy to atomically smooth ultra-thin oxide
指導教授:蔡中蔡中引用關係荊鳳德陳文照陳文照引用關係
指導教授(外文):C. TsaiAlbert ChinW. J. Chen
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:96
中文關鍵詞:極平整超薄氧化層矽磊晶選擇性矽磊晶
外文關鍵詞:atomically smoothultra-thin oxideSi epitaxyselective Si epitaxydeuterium annealSILC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要:
我們已經設計一緊密熱璧型低壓爐管系統,將之用於成長矽磊晶,選擇性矽磊晶以及極薄二氧化矽(< 30A)。在晶片表面殘存的自然生成氧化層不僅降低磊晶層的品質,其同樣對於極薄氧化層的品質有重大的影響.與超高真空化學氣相沉積或分子束磊晶相較,我們使用了設計良好的緊密型爐管以及高溫氫氣熱烤去降低爐管中水氣及氧氣的含量.我們使用此方法,首先在550oC成功的長出與矽基板相同品質矽磊晶.這低溫550oC的磊晶可以用來做矽-鍺磊晶.使用二氯甲矽皖(SiH2Cl2)去成長選擇性磊晶,我們可以在750oC成功的長出這個溫度可以用於積體電路的製程.自然生成氧化層將會影響閘極氧化層的品質.由於先去除自然生成氧化層然後再成長熱能氧化層,我們得到矽基板與氧化層之間的介面極為平整.使用此一氧化層與傳統爐管氧化層相較,有大量的改善載子移動率.在極平整氧化層下,其trap產生的速率以及SILC(stress induce leakage current)同樣大量的降低.我們使用氘去取代氫氣對閘極氧化層做退火,能夠得到更進一步改善這極薄氧化層的品質.由氘氣做退火可以降低五倍的SILC效應.
Abstract:
We have designed a leak-tight low pressure hot wall furnace system, which can be used to grow Si epitaxy layer, selective epitaxial Si and ultra-thin silicon dioxide (<30A). The residual native oxide not only degrades the quality of epitaxial material but also extremely important for ultra-thin gate oxide. In contrast to previous ultra-high-vacuum chemical-vapor-deposition or molecular beam epitaxy, we have used a leak-tight design and hydrogen bake to reduce the background moisture and oxygen. We have first successfully grown epitaxial Si at 550oC and the quality of epitaxial film has been found comparable to that of Si substrate. The low temperature of 550 oC is especially chosen because it is suitable for future SiGe epitaxy. The selective epitaxy is achieved at low temperatures by using Dichlorosilane (SiH2Cl2) and a minimum temperature of 750 oC is achieved that is low enough for process integration consideration. The native oxide can strongly influence the gate oxide integrity. By removing the native oxide and re-growing thermal oxide, atomically smooth oxide-Si interface can be achieved. Significant mobility improvement was obtained from these oxides than that from conventional furnace oxidation. The trap generation rate and stress-induced leakage current (SILC) are also much reduced using the atomically smooth oxide. The gate oxide quality of ultra-thin oxide can be further improved by using deuterium annealing instead of traditional forming gas annealing. A factor of five times reduction of SILC is obtained by deuterium annealing.
封面
Abstract(in Chinese)
Abstract(in English)
Acknowledgement
Contents
Table Captions
Figure Captions
Chapter 1 Introduction
1.1 Background & Motivation
1.2 Innovation & Contribution
Chapter 2 Low temperature silicon epitaxy
2.1 Introduction
2.2 Experimental
2.3 Results and Discussion
2.4 Conclusion
Chapter 3 Low temperature selective epitaxy
3.1 Introduction
3.2 Experimental
3.3 Results and Discussion
3.4 Conclusion
Chapter 4 The effect of native on ultra-thin oxide: Physical property
4.1 Introduction
4.2 Experimental
4.3 Results and Discussion
4.4 Conclusion
Chapter 5 The effect of native on ultra-thin oxide: electrical property
5.1 Introduction
5.2 Experimental
5.3 Results and Discussion
5.4 Conclusion
Chapter 6 To study ultra-thin gate oxide improvement by deuterium annealing
6.1 Introduction
6.2 Experimental
6.3 Results and Discussion
6.4 Conclusion
Chapter 7 Conclusions
References
Vita
Publication lists
References
Chapter 1
[1.1] K. M. Cham, S. Oh, D. Chin, and J. L. Moll: Computer-Aided Design and VLSI Device
Development, Boston, Klewer, 1986, Chap. 9.
[1.2] S.-H. LO, D. A. Buchanan, Y. Taur, W. Wang, IEEE.
EDL vol. 18 NO. 5, pp. 209-211, MAY 1997.
[1.3] C. Hu Proceedings of the IEEE, pp682, May (1993).
[1.4] T. Sorsch , W. Timp, F. H. Baumann, K. H. A. Bogart,
T. Boone, V. M. Donnelly, etc.: symp on VLSI Tech.,
pp.222-223. 1998.
[1.5] A. Chatterjee, R. A. Chapman, G. Dixiit, J. Kuehne, S. Hattangady, H. Yang, G. A. Trown, R. Aggarwal, U.
Erdogan, Q. P. Potondaro, J. C. Hu, M. Terry, W.
Lee,C. Fernando, A. Konecni, G. Wells, D. Frystak,
C. Bowen, M. Rodder, and I.-C. Chen: IEDM tech.
Dig. pp.453-456, 1997.
[1.6] G. Timp, A. Agarwal, F. H. Baumann, T. Boone, M.
Buonanno, T. Cirelli, V. Donnelly, M. Foad, D. Grant,
M. Green, H. Gossman, S. Hillenisu, J. Jackson, D.
Jacobson, R. Kleiman, A. kornblit, F. Dlemens, J. T-C
Lee, W. Mansfield, S. Moccio, A. Murrell,
M.O’Malley, J. Rosamilia, J. Sapjeta, P. Siverman, T.
Sorsch, W. W. Tai, D. tennant, H. Vuong, and, B. Weir: IEDM Tech. Dig. pp.930-932, 1997.
[1.7] K. S. Krisch. L. Manchanda, F. H. Baumann, M. L.
Green, D. Brasen, L. C. Feldmam, A. Ourmazed:
IEDM Tech. Dig, pp. 325-328 1994
[1.8] J.Yugami, T. Itoga, and M. Ohhra: IEDM Tech. Dig.,.
pp. 885-888, 1995.
[1.9] Stefan Lai : 1998 int’l NonVolatile Memory
Technology Conference pp.6-7
[1.10] J. Maserjian and N. Zamani, J.Vac.Sci.Technol.,
vol.20, p.743, 1982.
[1.11] P. Olivo, T. N. Ngyuyen, and B. Ricco, IEEE Trans.
Electron Devices, Vol.35, p.2259, 1988.
[1.12] P. Olivo, B. Ricco, and E. Sangiorgi, Appl. Phys.
Lett., vol.48, p.1135, 1986.
[1.13] R. Moazzami and C.Hu, IEDM Tech. Dig., pp.139,
1992.
[1.14] R. Rofan and C. Hu, IEEE Electron Device Lett.,
vol.12, pp.632, 1991.
[1.15] D. J. Dumin, J. R. Maddux, IEEE Trans. Electron
Devices, vol.40, pp.986, 1993.
Chapter 2
[2.1] B. S. Meyerson, Appl. Phys. Lett. 48, 797 (1986)
[2.2] B. S. Meyerson, F. J. Himpsel, and K. J. Uram, Appl.
Phys. Lett. 57, 1034 (1980)
[2.3] M. A. Kallel, V. Arbet-Engles, K. L. Wang, and R. P.
G. Karunasiri, J. Cryst. Growth 111, 897 (1990)
[2.4] S. H. Li, S. W. Chung, J. K. Rhee, and P. K.
Bhattacharya, J. Appl. Phys. 71, 4916 (1992)
[2.5] J. C. Lou, C. Galewski, and W. G. Oldham, Appl.
Phys. Lett. 58, 59(1991)
[2.6] Y. C. Shih, G. Zhang, C. Hu, and W. G. Oldham, Appl
Phys. Lett. 67 2040 (1995)
[2.7] P. Chatterjee, IEDM Tech. Digest 128 (1986)
[2.8] N. Kasai, N. Endo, A. Ishitani, and H. Kitajima, IEEE
Tran. Electron Devices ED-34, 1331 (1987)
[2.9] T. Yamazaki, S. Watanabe, T. Sugii, and T. Ito, IEDM
Tech. Digest 586 (1987)
[2.10] D.L. Harame, J. H. Comfort, J. D. Cressler, IEEE
Trans. Electron Devices ED-42 469(1995)
[2.11] D. K. Nayaki, J. C. S. Woo, G. K. Yabiku, K. P.
Macwilliams, IEEE Electron Device Lett. 14, 520
(1993)
[2.12] S. D. Hersee, P. Martin, A Chin, and J. M. Ballingall,
J. Appl. Phys. 70, 973 (1991)
[2.13] A. Chin, P. Martin, U. Das, J. Mazurowski, and J. M.
Ballingall, Appl. Phys. Lett. 61, 2099 (1992)
[2.14] H. Hirayama, T. Tatsushi, A. Ogura, and N. Aizaki,
Appl. Phys. Lett. 51, 2213 (1987)
Chapter 3
[3.1] N. Kasai, N. Endo, A. Ishitani, and H. Kitajima, IEEE IEDM Tech. Dig., Sec. 15.6, 419 (1985).
[3.2] N. Kasai, N. Endo, A. Ishitani, and H. Kitajima, IEEE. Tran.. Electron Devices, ED-34(6), 1331 (1987).
[3.3] J. Manoliu and J. O. Borland, IEEE, IEDM Tech.
Digest, 20c(1987).
[3.4] M. R. Goulding and J. O. Borland, Semiconduct. Int.,
6 (May, 1988) 90.
[3.5] J. Manoliu and J. Borland, IEEE. IEDM Tech. Digest,
20c (1987).
[3.6] A. Ishitani, H. Kitajima, K. Tanno, and H. Tsuya,
Microelectronic Eng. 4 (3)(1986).
[3.7] A. Stivers, C. Ting, and J. Borland, in Chemical Vapor
Deposition, 1987, ESC 87-88, 389(1987).
[3.8] J. Bungarti, B. S. Grinburg, S. R. Mader, T. C. Chen,
and D. L. Harame, IEEE Electron Device Lett. 9, 25a
(1988).
[3.9] C. I. Drowley, G. A. Reid, and R. Hull, Appl. Phys.
Lett., 52, 546 (1988).
[3.10] V. J. Silverstri, J. Electronchem. Soc., 135, 1806
(1988).
[3.11] C.-P. Chao, K. E. Violette, S. Unnikrishnan, M.
Nandakumar, R. L. Wise, J. A. Kittl, Q.-Z. Hong, and
I.-C. Chen: IEEE, IEDM Tech. Dig. 1997.
Chapter 4
[4.1]B. E. Weir, P. J. Silverman, D. Monroe, K. S. Krisch,
M. A. Alam, G. B. Alers, T. W. Sorsch, G. L. Timp, F.
Baumann, C. T. Liu, Y. Ma, and D. Hwang, IEDM
Tech. Dig., 73 (1997).
[4.2]C. T. Liu, A. Ghetti, Y. Ma, G. Alers, C. P. Chang, K.
P. Pheung, J. I. Colonell, W. Y. C. Lai, C. S. Pai, R.
Liu, H. Vaidya, and J. T. Clemens, IEDM Tech. Dig.,
pp. 85, (1997).
[4.3]L. K. Han, M. Bhat, D. Wristers, J. Fulford, and D. L.
Kwong, IEDM Tech. Dig., 617, (1994).
[4.4]C. Hu, IEDM Tech. Dig.,, pp. 319, (1996).
[4.5]K. S. Krisch, L. Manchanda, F. H. Baumann, M. L.
Green, D. Brasen, L.C.Feldman, and A. Ourmazd,
IEDM Tech. Dig., 325, (1994).
[4.6] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S.
Nakamura, M. Saito, and H.Iwai, IEEE Trans.
Electron Devices 43, 1233 (1996).
[4.7] J. Yugami, T. Itoga, and M. Ohhra, IEDM Tech. Dig.,
885 (1995).
[4.8]A. Chin, W. J. Chen, T. Chang, R. H. Kao, B. C. Lin,
C. Tsai, and J. C.-M. Huang, IEEE Electron Device
Lett. vol. 18, no. 9 417-419 (1997).
[4.9]J. C. Lou, C. Galewski, and W. G. Oldham, Appl. Phys
. Lett. 58, 59 (1991).
[4.10]A. Chin, B. C. Lin, and W. J. Chen, Appl. Phys. Lett.
69, 1617 (1996).
[4.11]B. S. Meyerson, F. J. Himpsel, and K. J. Uram, Appl
. Phys. Lett. 57, 1034 (1990).
Chapter 5
[5.1] J. Ahn, W. Ting, T. Chu, S. Lin, and D. L. Kwong,
“High quality thin gate oxide prepared by annealing
low-pressure chemical vapor deposited SiO2 in N2O,”
Appl. Phys. Lett., vol. 59, no. 3, pp. 283-285, 1991.
[5.2] C. T. Liu, E. J. Lloyd, Y. Ma, M. Du, R. L. Opila, and
S. J. Hillenius, “High performance 0.2 m CMOS
with 25 A gate oxide grown on nitrogen implanted Si
substrates,” in IEDM Tech. Dig.,1996, pp. 499-502.
[5.3] C. Lin, A. Chou, K. Kumar, P. Chowdhury, and J. C.
Lee, “Leakage current, reliability characteristics and
boron penetration of ultra-thin (32-36A) O2-oxide and
N2O/NO oxynitrides,” in IEDM Tech. Dig.,1996, pp.
331-334.
[5.4] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S.
Nakamura, M. Saito, and H. Iwai, “1.5 nm direct-
tunneling gate oxide Si MOSFET’s,” IEEE Trans.
Electron Devices, vol. 43, no.8, pp. 1233-1241, 1996.
[5.5] T. Matsuoka, S. Kakimoto, M. Nakano, H. Kotaki, S.
Hayashida, K. Sugimoto, K. Adachi, S. Morishita, K.
Uda, Y. Sato, M. Yamanaka, T. Ogura, and J. Takagi,
“Direct tunneling N2O gate oxynitrides for low-
voltage operation of dual gate CMOSFETs,” in IEDM
Tech. Dig.,1995, pp. 851-854.
[5.6] R.-H. Yan, D. Monroe, J. Weis, A. Mujtaba, and E
. Westerwick, “Reducing operating voltage from 3,2, to
1 volt and below-challenges and guidelines for
possible solutions,” in IEDM Tech. Dig.,1995, pp.
55-58.
[5.7] J. Hauser, “Extraction of experimental mobility data
for MOS devices,” IEEE Trans. Electron Devices, vol.
43, no. 11, pp. 1981-1988, 1996.
[5.8] S. C. Sun and J. D. Plummer, “Electron mobility in
inversion and accumulation layers on thermally
oxidized silicon surfaces,” IEEE Trans. Electron
Devices, vol. 27, no. 8, pp. 1497-1508, 1980.
[5.9] H. Shin, G. M. Yeric, A. F. Tasch, and C. M. Maziar,
“Physically-based models for effective mobility and
local-field mobility of electrons in MOS inversion
layers,” Solid-State Electron., vol. 34, no.6, pp. 545-
552, 1991.
[5.10] A. Chin, B. C. Lin, and W. J. Chen, “High quality
epitaxial Si grown by a simple low-pressure
chemical vapor deposition at 550 degrees C,” Appl
. Phys. Lett., vol. 69, no. 11, pp. 1617-1620, 1996.
[5.11] M.-S. Liang, J. Y. Choi, P.-K. Ko, and C. Hu,
“Inversion-layer capacitance and mobility of very
thin gate-oxide MOSFET’s,” IEEE Trans. Electron
Devices, vol. 33, no. 3, pp. 409-413, 1986.
[5.12]C. Hu, “Gate oxide scaling limits and projection,” in
IEDM Tech. Dig.,1996, pp. 319-322.
[5.13] A. A. Grinberg and M. S. Shur, “Effect of image
charges on impurity scattering of two-dimensional
electron gas in AlGaAs/GaAs,” J. Appl. Phys., vol.
58, no. 1, pp. 382-386, 1985.
[5.14] F. Stern and W. E. Howard, “Properties of
semiconductor surface inversion layers in the electric
quantum limit,” Phys. Rev., vol. 163, no. 3, pp. 816-
835, 1967.
[5.15] M. Y. Hao and J. C. Lee, “Electrical characteristics
of oxynitrides grown on textured single-crystal
silicon,” Appl. Phys. Lett., vol. 60, pp. 445-447,
1992.
[5.16] S. L. Wu, C. L. Lee, and T. F. Lei, “Tunnel oxide
prepared by thermal oxidation of thin polysilicon
film on silicon,” IEEE Trans. Electron Devices, vol.
14, no. 8, pp. 379-381, 1993.
Chapter 6
[6.1] J. W. Lyding, K. Hess and I. C. Kizilyalli: Appl. Phys.
Lett. 68 (1996) 2526.
[6.2] I. C. Kizilyalli, J. W. Lyding and K. Hess: IEEE
Electron Device Lett. 18 (1997) 81.
[6.3] R. A. B. Devine, J.-L. Autran, W.L. Warren, K. L.
Vanheusdan and J. C. Rostaing: Appl. Phys. Lett. 70
(1997) 2999.
[6.4] H. C. Mogul, L. Cong, R. M. Wallace, P. J. Chen, T.
A. Rost and K. Harvey: Appl. Phys. Lett. 72 (1998)
B. 1721.
[6.5] C. G. Van de Walle and W. B. Jackson: Appl. Phys.
Lett. 69 (1996) 2441.
[6.6] A. Chin, B. C. Lin, W. J. Chen, Y. B. Lin and C. Tsai:
to be published in IEEE Electron Device Lett. (1998)
Nov.
[6.7] A. Chin, W. J. Chen, T. Chang, R. H. Kao, B. C. Lin,
C. Tsai and J. C.-M. Huang: IEEE Electron Device
D. Lett. 18 (1997) 417.
[6.8] A. Chin, W. J. Chen, B. C. Lin, J. H. Kao, C. Tsai and
J. C.-M. Hwang: J. Electrochem. Soc. 144 (1997) L97.
[6.9] J. H. Wei, M. S. Sun and S. C. Lee: Appl. Phys. Lett
. 71 (1997) 1498.
[6.10] K. Sakakibara, N. Ajika, M. Hatanaka and H.
Miyoshi: Proc. 34th Int. Reliability Phys. Symp.,1996
p. 100.
[6.11] B. E. Weir, P. J. Silverman, D. Monroe, K. S. Krisch, M. A. Alam, G. B. Alers, T. W. Sorsch, G. L. Timp,
E. Baumann, C. T. Liu, Y. Ma and D. Hwang:
F. IEDM Tech. Dig. (1997) p. 73.
[6.12] C. T. Liu, A. Ghetti, Y. Ma, G. Alers, C. P. Chang,
K. P. Cheung, J. I. Colonell, W. Y. C. Lai, C. S. Pai,
R. Liu, H. Vaidya, and J. T. Clemens: IEDM Tech.
Dig., (1997) p. 85.
[6.13] J. W. Lyding, T. C. Shen, J. S. Hubacek, J. R.
Tucker, and G. C. Abeln: Appl. Phys. Lett., vol. 64.
pp.2010-2012, 1995.
[6.14] Ph. Avouris and J. W. Lyding, private
communication.
[6.15] T.-C. Shen. C. Wang, G. C. Ablen, J. R. Tucker, J.
W. Lyding, Ph. Avouris, and R. E. Walkup: Science,
vol. 268, pp. 1590-1592, 1995.
[6.16] J.Maserjian and N. Zamani: J. Vac.Sci. Technol., vol. 20, pp. 743-746, 1982.
[6.17] R. Rofan and C. Hu: IEEE Electron Device Lett., vol. 12, pp. 632-634, 1991.
[6.18] P. Olivio, T. Nguyen, and B. Ricco: IEEE Trans.
Electron Devices, vol. 35, pp. 2259-2265, 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top