(54.236.62.49) 您好!臺灣時間:2021/03/08 03:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴美澂
研究生(外文):Mei-Cheng Dai
論文名稱:d波超導之磁性性質
論文名稱(外文):Magnetic Properties in d-wave Superconductors
指導教授:楊宗哲楊宗哲引用關係
指導教授(外文):Tzong-Jer Yang
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:120
中文關鍵詞:京茲堡-朗道理論質量非均向性d波對稱性上臨界場廣義倫敦方程式兩個平行渦漩之交互作用依賴時間的京茲堡-朗道理論異常霍爾效應
外文關鍵詞:Ginzburg-Landau theorymass anisotropyd-wave superconductorsgeneric London equationthe upper critical fielda torque between vorticesthe time-dependent Ginzburg-Landau theorythe anomalous Hall effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
京茲堡-朗道理論已經成功地預言許多有關d波超導體的有趣性質。至目前為止,大部分被提出的理論均假設序參量具有單純的d波對稱性或s-d波混合對稱性。這篇論文是在惟象的和微觀的京茲堡-朗道理論架構下,對d波超導體的磁性性質作更深入研究。
首先,我們以質量為非均向性的京茲堡-朗道理論為基礎,推導由外加場引起的非零、次要序參量,其振幅與超流之振幅及方向有關。在某些特殊情況下,被引起的s波分量之極值產生。不同於質量均向性結果,我們也發現超流密度與波向量不平行。
利用相同理論,我們研究外加磁場對渦旋結構影響,我們發現s波的彎曲數與向量位能無關。我們也推導d波超導體所對應之廣義倫敦方程式,忽略高階項,倫敦方程式被解。此外,我們計算兩個平行渦漩之交互作用,並且證明之間存在力矩,這個重大發現指出因質量非均向性所造成的力矩,可能改變晶格結構。
在京茲堡-朗道理論範圍內,d波超導體是由a-b平面超導層偶和由有效質量近似之垂直方向組成,此外,要求垂直方向之相干長度大於層與層間距離,在此模型基礎下,我們計算出上臨界場,根據結果,上臨界場相對溫度之曲線的斜率和外加磁場與c軸之夾角有關。最有興趣的是c方向參數對a-b平面比值會影響上臨界場,當此比值遞減,上臨界場遞增。我們也發現在上臨界場範圍內,s波分量不存在,這意味上臨界場相對溫度之曲線圖會朝上是d波超導體特性之一。
最後我們以依賴時間的京茲堡-朗道理論為出發,研究d波超導體的渦旋運動方程式,考慮複數緩和時間,結果發現虛部導致霍爾效應變號。京茲堡-朗道自由能參數會因非磁性雜質而不同,此改變也會引起霍爾角度變號,這意味著非磁性雜質與異常霍爾效應有關。
The Ginzburg-Landau theory has successfully predicted many
interesting properties of $d$-wave superconductors near
$T_c$.
Most of the theories proposed so far assumed the
order parameter with purely $d_{x^2-y^2}$-wave symmetry
or mixed $s$+$d$ symmetry.
Within the context of the relevant phenomenological and
microscopical Ginzburg-Landau theory, this thesis is
concerned with studies of the magnetic properties
for a $d$-wave superconductor.
Underlain by the Ginzburg-Landau theory of a $d$-wave superconductor
with mass anisotropy $\lambda = m_x/m_y$, we have derived the non-zero,
subsidiary order parameter induced by an external current.
The amplitude of induced $s$-component depends on the amplitude
and direction of the current.
The extreme values appear in some specific conditions.
Unlike the isotropic case, we find that the current density is not
parallel to the wave vector any more except $M_a = 1$.
The single vortex structure is derived in the presence of
applied magnetic field.
According to our results, the winding number
of the $s$-wave does not change regardless of the vector potential.
The generic London equation for a $d_{x^2-y^2}$-wave
superconductor with mass anisotropy is expressed.
By neglecting higher order terms, this work analyzes the magnetic-field
distribution with and without a vortex.
The interaction force between two parallel vortices is derived as well.
Our results further reveal the presence of a torque between vortices
irrespective of $s$- or $d$-wave order parameter,
which is expected to vanish for isotropic cases.
This implies that a torque between vortices due to mass
anisotropy can change the lattice structure.
A $d_{x^2-y^2}$ superconductor is modeled as the superconducting
layers in the $a$-$b$ plane, whose coupling in the $c$-direction
is approximated by the effective mass,
within the Ginzburg-Landau theory.
In this work, this model is applied to the system where
the coherence length along the $c$-direction is greater
than the layer spacing.
Based on our model, we calculate the upper critical field
in a magnetic field lying in $a$-$c$ plane and tilted
by an angle from the $c$-axis.
According to our results,
the curvature of $H_{c2}(T)$
is upward, and the slope $-dH_{c2}(T)/dT$ depends on the
angle between the c-axis and the external field.
It is worthwhile to note that the ratio of the $c$-direction
parameter related to the effective mass
to the $a$-$b$ plane parameter connected with the effective mass
can make enormous influence $H_{c2}$.
As this ratio decreases, $H_{c2}$ becomes increasing.
We also find that there is no admixture of $s$-wave component
in the critical regime and believe that the upward
curvature of the $H_{c2}(T)$ is illuminated as
the characteristic property of a $d$-wave superconductor.
In the context of the time-dependent Ginzburg-Landau theory
for a $d_{x^2-y^2}$-wave superconductor, we investigate the energy
theorem that demonstrates that the rate of increase
of the total free energy plus the rate of dissipation
equals the inflow of energy current.
In addition, we derive an equation of motion
for a single vortex $(h \ll H_{c2})$ in the presence
of an applied transport current.
Our results indicate
that the imaginary parts of the relaxation times
for $s$- and $d$-wave order parameters can change a sign
of the Hall effect.
We also find that the change of the parameters in the
Ginzburg-Landau free energy functional, due to the
nonmagnetic impurities, can affect the anomalous
Hall effect.
The tangent of Hall angle is investigated and found that
the negative part of the tangent of Hall angle is essentially
due to the imaginary parts of the relaxation time.
Cover
Astract in Chinese
Abstract in English
Acknowledgments in Chinese
Contents
List of Figures
Chapter 1 Introduction
Chapter 2 The Ginzburg-Landau Theory for d-wave Superconductors
2.1 Introduction
2.2 Symmetry and Superconductors
2.3 Phenomenological Ginzburg-Landau Equations
2.4 The GL theory with mass anisotropy
2.5 Superconductors with nonmagnetic impurities
Chapter 3 Non-d-wave Superconducting Induced by Current in d-wave Superconductors with Mass Anisotropy
3.1 Introduction
3.2 d-Wave Superconductor With Mass Anisotropy
3.3 Discussion and Conclusioins
Chapter 4 Magnetic properties for anisotropic dx2-y2-wave Superconductivity
4.1 Introduction
4.3 The London Equation
4.4 Interaction between two vortices
4.5 Summary and Discussion
Chapter 5 Exact solution of the Ginzburg-Landau equation for the upper critical field of a dx2-y2 superconductor
5.1 Introduction
5.2 Calculations of The Upper Critical Field
5.3 Conclusions
Chapter 6 Time-Dependent Ginzburg-Landau Equations for dx2-y2-wave superconductivity
6.1 Introduction
6.2 The Energy Theorem
6.3 the Hall Effect
6.4 Discussion
Chapter 7 Conclusioins and future works
Appendix A Supercurrent
Appendix B parameters
References
Curriculum vitae and list of publications
J. G. Bednorz and K. A. M\"uller, Z. Phys. B {\bf 64}, 189 (1986).
B. D. Josephson, Phys. Lett. {\bf 1}, 251 (1962).
L. P. Gorkov, Sov. Phys. JETP {\bf 7}, 505 (1958).
L. D. Landau and E. M. Lifshitz, 1976, {\it Statistical Physics}
(Nauka, Moscow).
V. L. Ginzburg and L. D. Landau, Zh. Eksp. \& Teor. Fiz. {\bf 20},
1064 (1950).
A. J. Berlinsky, A. L. Fetter, M. Franz, C. Kallin, and P. I. Soininen,
Phys. Rev. Lett. {\bf 75}, 2200 (1995).
M. Franz, C. Kallin, P. I. Soininen, A. J. Berlinsky, and A. L. Fetter,
Phys. Rev. B {\bf 53}, 5795 (1996).
Y. Ren, J. H. Xu, and C. S. Ting, Phys. Rev. B {\bf 53}, R2991 (1996).
Y. Ren, J. H. Xu, and C. S. Ting, Phys. Rev. Lett. {\bf 74}, 3680 (1995).
Y. Ren, J. H. Xu, and C. S. Ting, Phys. Rev. B {\bf 52}, 7663 (1995).
N. E. Bickers, D. J. Scalapino, and R. T. Scalettar,
Int. J. Mod. Phys. B {\bf 1}, 687(1987).
Z. Y. Weng, T. K. Lee, and C. S. Ting, Phys. Rev. B {\bf 38}, 6561 (1988).
P. Mouthoux, A. V. Balatsky, and D. Pines,
Phys. Rev. Lett. {\bf 67}, 3448 (1991).
G. Kotliar, Phys. Rev. B {\bf 37}, 3664 (1988); D. Polblance, {\it ibid.}
{\bf 39}, 140 (1989).
F. C. Zhang, C. Gros, T. M. Rice and F. Shiba, Supercond. Sci. Tech.
1, 36 (1988).
W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang,
Phys. Rev. Lett. {\bf 70}, 3999 (1993).
Z. X. Shen, D. S. Dessau, B. O. Wells, D. M. King, W. E. Spicer,
A. J. Arko, D. Marshall, L. W. Lombardo, A. Kapitulnik,
P. Dickinson, S. Doniach, J. DiCarlo, A. G. Loeser, and
G. H. Park, Phys. Rev. Lett. {\bf 70}, 1553 (1993).
D. A. Wollman, D. J. Van Harlingen, W. C. Lee, D. M. Ginsberg,
and A. J. Leggett, Phys. Rev. Lett. {\bf 71}, 2134 (1993).
C. C. Tsuei, J. R. Kirtley, C. C. Chi, L. S. Yu-Jahnes, A. Gupta,
T. Shaw, J. Z. Sun, and M. B. Ketchen, Phys. Rev. Lett. {\bf 73}, 593 (1994).
A. Mathai, Y. Gim, R. C. Black, A. Amar, and F. C. Wellstood,
Phys. Rev. Lett. {\bf 74}, 4523 (1995).
J. H. Miller Jr. Q. Y. Ying, Z. G. Zou, N. Q. Fan,
J. H. Xu, M. F. Davis and J. C. Wolfe,
Phys. Rev. Lett. {\bf 74}, 2347 (1995).
Phys. Rev. B {\bf 54}, 9385 (1996).
Qiang Han and Liyuan Zhang, Phys. Rev. B {\bf 56}, 11942 (1997).
M. Tinkham, {\it Introduction to superconductivity} ( McGraw-Hill,
New York, 1996).
J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev.
{\bf 106}, 162; {\bf 108}, 1175 (1957).
J. R. Schrieffer, Theory of Superconductivity (Reading, Massachuusetts:
Benjamin-Cummings).
L. P. Gorkov, Zh. Eksp. Teor. Fiz.{\bf 36}, 1918 (1959)
[Sov. Phys. JETP{\bf 9}, 1364 (1960)].
C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett.
{\bf 9}, 307 (1964).
P. Chaudhari and S. Y. Li, Phys. Rev. Lett. {\bf 72}, 1084 (1994).
J. Bertouras and R. Joynt, Europhys. Lett. {\bf 31}, 119 (1995).
K. Alex M$\ddot{u}$ller, Nature {\bf 377},133 (1995).
V. Z. Klesin and S. A. Wolf, Phys. Rev. B{\bf 46}, 6438 (1992).
K. Zhang, D. A. Bonn, S. Kamal, R. Liang, D. J. Baar,
W. N. Hardy, D. Basov and T. Timusk, Phys. Rev. Lett. {\bf73},
2484 (1994).
I. Maggio-Aprile, C. Renner, A. Erb, E. Walker and
$\emptyset$. Fischer, Phys. Rev. Lett. {\bf 75}, 2754 (1995).
Y. Ren, J. H. Xu and C. S. Ting, Phys. Rev. B{\bf 53}, 2249 (1996).
Q. Han and L. Zhang, Phys. Rev. B {\bf 56}, 11942 (1997).
K. Maki and M. T. Beal-Monod, Phys. Rev. Lett. A{\bf 208}, 365 (1995);
M. T. Beal-Monod and K. Maki, Phys. Rev. B{\bf 53}, 5775 (1996).
T. Hotta, J. Phys. Soc. Jpn. {\bf 62}, 274 (1993).
L. S. Borkowski and P. J. Hirshfeld, Phys. Rev. B {\bf 49}, 15404 (1994).
Y. Sun and K. Maki, Phys. Rev. B {\bf 51}, 6059 (1995).
J. P. Carbott and C. Jiang, Phys. Rev. B {\bf 49}, 6126 (1994).
W. Xu, Y. Ren and C. S. Ting, Phys. Rev. B {\bf 53},
12481 (1996).
W. Xu, W. Kim, Y. Ren and C. S. Ting,
Phys. Rev. B {\bf 54}, R12693 (1996).
Martin Zapotocky, Dmitrii L. Maslov and Paul M. Goldbart, Phys.
Rev. B {\bf 55}, 6599 (1997).
T. R. Lemberger, in {\it Physical Properties of High Temperature
Superconductors}, {\bf Vol.3}, D. M. Ginsberg(ed.), (World Scientific,
Singapore, 1996).
P.\ Monthoux and D.\ Pines, Phys. Rev. B {\bf 47}, 6069 (1993).
M. C. Dai, T. J. Yang and C. S. Ting, accepted bt Phys. Rev. B.
Ian Affleck, Marcel Franz, and M. H. Sharifzadeh Amin,
Phys. Rev. B {\bf 55}, R704 (1997).
V. G. Kogan, Phys. Rev. B {\bf 24}, 1572 (1981).
Milton Abramowitz and Irene A. Stegun, Handbook of
Mathematical Functions: with Formulas, Graphs and Mathematical
Tables.
V. G. Kogan, Phys. Rev. Lett. {\bf 64}, 2192 (1990).
D. Chang, C. Y. Mou, B. Rosenstein and C. L. Wu, Phys. Rev. B
{\bf 57}, 7955 (1998).
G. W. Crabree, W. K. Kwok, U. Welp, R. Burriel, H. Claus,
K. G. Vandervoort and J. Z. Liu,
J. Magn. Mater. {\bf 76-77}, 547 (1988);
M. Oda, Y. Hidaka, M. Suzuki and M. Murakami,
Phys. Rev. B {\bf 38}, 252 (1988).
For example, T. K. Worthington, W. J. Gallagher and T. R. Dinger,
Phys. Rev. Lett. {\bf 59}, 1160 (1987);
U. Welp, W. K. Kwok, G. W. Crabtree, K. G. Vandervoort and J. Z. Liu,
Phys. Rev. Lett. {\bf 62}, 1908 (1989).
R. V. Coleman, G. K. Eiserman, S. J. Hillenius, A. T. Mitchell,
and J. L. Vicent, Phys. Rev. B {\bf 27}, 125 (1993).
U. Welp, W. K. Kwok, G. W. Crabtree, H. Claus,
K. G. Vandervoort, B. Dabrowski, A. W. Mitchell, D. R. Richards,
D. T. Marx and J. Z. Liu,
Physica {\bf 156C}, 27 (1988).
K. Murata {\it et al.}, Synth. Met. A{\bf 341}, 27 (1988).
Y. Hidaka and M. Suzuki, Nature {\bf 338}, 635 (1989).
M. D. Lan, J. Z. Lin, Y. X. Jia, Lu Zhang, Y. Nagata, P. Klavins,
and R. N. Shelton, Phys. Rev. B {\bf 47}, 457 (1993).
M. Suzuki and M. Hikata, Jpn. J. Appl. Phys. {\bf 28}, L1368 (1989).
P. Samuely, P. Szabo, T. Klein, A. G. M. Jansen,
J. Marcus, C. Escribe-Filippini and P. Wyder,
Europhys. Lett. {\bf 41}, 207 (1998).
Yu. N. Ovchinnikov and Vladimir Z. Kresin, Phys. Rev. B {\bf 52},
3075 (1995).
Yu. N. Ovchinnikov and Vladimir Z. Kresin, Phys. Rev. B {\bf 54},
1251 (1996).
Y. N. Ovchinnikov and Vladimir Z. Kresin, J. Superconductivity,
{\bf 10}, 257 (1997).
W. Kim, J. X. Zhu and C. S. Ting, Phys. Rev. B {\bf 58}, 6455 (1998).
K. Maki and M. T. Beal-Monod, Phys. Rev. B {\bf 55}, 11730 (1997).
K. Takanaka and K. Kuboya, Phys. Rev. Lett. {\bf 75}, 323 (1995).
S. K. Sundaram and R. Joynt, Phys. Rev. Lett. {\bf 66},
512 (1991).
C. M. Bender and S. A. Orszag, {\it Advanced Mathematical Methods
for Scientists and Engineers} (McGraw-Hill, New York, 1978),
Chaps.\ 2 and 5.
Y. Hidaka, Y. Enomoto, M. Suzuki, M. Oda and T. Murakami,
Jpn. J. Appl. Phys. {\bf 26}, L377 (1987).
B. S. Shivaram, T. F. Rosenbaum and P. G. Hinks,
Phys. Rev. Lett. {\bf 57}, 1259 (1986).
S. Ullah and A. T. Dorsey, Phys. Rev. B {\bf 44}, 262 (1991).
K. A. Kouznetsov, A. G. Sun, B. Chen, A. S. Katz, S. R. Bahcall,
J. Clarke, R. C. Dynes, D. A. Gajewski, S. H. Han, M. B. Maple,
J. Giapintzakis, J. T. Kim, and D. M. Ginsberg,
Phys. Rev. Lett. {\bf 79}, 3050 (1997).
J. Bardeen and M. J. Stephen, Phys. Rev. {\bf 140}, A1197 (1965);
P. Nozi\''eres and W. F. Vinen, Philos. Mag. {\bf 14}, 667 (1966).
A. T. Dorsey and M. P. A. Fisher, Phys. Rev. Lett. {\bf 68}, 694 (1992).
J. Luo, T. P. Orlando, J. M. Graybeal, X. D. Wu and
R. Muenchausen, Phys. Rev. Lett. {\bf 68}, 690 (1992).
S. J. Hagen, C. J. Lobb, R. L. Greene and M. Eddy,
Phys. Rev. B {\bf 43}, 6246 (1991).
T. R. Chien, T. W. Jing, N. P. Ong and Z. Z. Wang,
Phys. Rev. Lett. {\bf 66}, 3075 (1991).
S. J. Hagen, C. J. Lobb, R. L. Greene, M. G. Forrester and
J. H. Kang, Phys. Rev. B {\bf 41}, 11630 (1990).
Y. Iye, S. Nakamura and T. Tamegai, Physica C159, 616 (1989).
Z. D. Wang and C. S. Ting, Phys. Rev. B {\bf 46}, 284 (1992).
C. R. Hu and R. S. Thompson, Phys. Rev. B {\bf 6}, 110 (1972).
L. P. Gor''kov and N. B. Kopnin, Sov. Phys. Usp. {\bf 18}, 496 (1975).
N. B. Kopnin and V. E. Kravstov, JETP Lett. {\bf 23}, 578 (1976);
Sov. Phys. JETP {\bf 44}, 861 (1976).
A. van Otterlo, M. Feigel''man, V. Geshkenbein,
and G. Blatter, Phys. Rev. Lett. {\bf 75}, 3736 (1995).
A. T. Dorsey, Phys. Rev. B {\bf 46}, 8376 (1992).
N. B. Kopnin, B. I. Ivlev and V. A. Kalatsky, J. Low. Temp.
Phys. {\bf 90}, 1 (1993).
N. B. Kopnin, J. Low. Temp. Phys. {\bf 110}, 885 (1998).
A. V. Samoilov, Z. G. Ivanov and L. G. Johansson, Phys.
Rev. B {\bf 49}, 3667 (1994).
L. P. Gor''kov and P. A. Kalugin, JETP Lett. {\bf 41}, 253 (1985).
N. B. Kopnin and G. E. Volovik, JETP Lett. {\bf 64}, 690 (1996).
Y. Sun and K. Maki, Europhys. Lett. {\bf 32}, 355 (1995).
P. A. Lee, Phys. Rev. Lett. {\bf 71}, 1887 (1993).
M. J. Graf, S. K. Yip, J. A. Sauls and D. Rainer, Phys. Rev. B
{\bf 53}, 15147 (1996).
J. J. Vicente Alvarez, D. Dominquez and C. A. Balseriro,
Phys. Rev. Lett. {\bf 79}, 1373 (1997).
T. J. Rieger, D. J. Scalapino and J. E. Mercereau,
Phys. Rev. Lett. {\bf 27}, 1787 (1971).
J. X. Zhu, W. Kim and C. S. Ting, submitted to Phys. Rev. Lett..
A. Schmid, Phys. Kondens. Materie {\bf 5}, 302 (1966).
P. W. Anderson, Chapter VII of a forthcoming book on high
$T_c$ superconductivity (Princeton Univ. Press,Princeton,
N.J.,to be published);
N. E. Bickers, D. J. Scalapino and R. T. Scalettar,
{\bf Int. J. Mod. Phys. B} {\bf 1}, 687 (1987);
P. Monthououx, A. V. Balastsky and D. Pines, Phys. Rev. Lett.
{\bf 67}, 3448 (1991).
D. J. Van Harlingen, Rev. Mod. Phys. {\bf 67}, 515 (1995).
J. Annett, N. Goldenfeld and A. J. Leggett, to appear in
{\it Physical Properties of High Temperature Superconductors},
{\bf Vol.5}, D. M. Ginsberg (ed.), (World Scientific, Singapore, 1996).
E. Dagotto, Rev. Mod. Phys. {\bf 66}, 763 (1994).
D. J. Scalapino, Phys. Rep. {\bf 250}, 331 (1995).
J. P. Frank {\it et al.}, Phys. Rev. B {\bf 44}, 5318 (1991).
H. J. Bornemann and D. E. Morris, Phys. Rev. B {\bf 44}, 5322 (1991).
A. G. Sun, D. A. Gajewski, M. B. Maple, and R. C. Dynes, Phys. Rev. Lett.
{\bf 72}, 2267 (1994).
J. Annett {\it et al.}, Phys. Rev. {\bf 43}, 2778 (1991).
S. K. Yip and J. A. Sauls, Phys. Rev. Lett. {\bf 69}, 2264 (1992).
K. A. Moler, D. J. Baar, J. S. Urbach, R. Liang, W. N. Hardy, and
A. Kapitulnik, Phys. Rev. Lett. {\bf 73}, 2744 (1994).
J. E. Sonier {\it et al.}, Phys. Rev. Lett. {\bf 72}, 744 (1994).
A. Maeda, Y. Iino, T. Hanaguri, K. Kishio, and T. Fukase,
Phys. Rev. Lett. {\bf 74}, 1202 (1995).
P. Kumar and P. Wolfle, Phys. Rev. Lett. {\bf 59}, 1954 (1987).
R. Joynt, Phys. Rev. B{\bf 41}, 4271 (1990).
Q. P. Lee, B. E. C. Koltenbah and R. Joynt,
Phys. Rev. B{\bf 48}, 437 (1993).
J. Ma, C. Quitman, R. J. Kelley, H. Bergen, C. Margaritondo,
and M. Onellion, Science {\bf 267}, 862 (1995).
M. Ding, J. C. Campuzano, and G. Tennings, Phys. Rev. Lett.
{\bf 74}, 2784 (1995).
P. I. Soininen, C. Kallin, and A. J. Berlinsky,
Phys. Rev. B {\bf 50}, 13883 (1994).
G. E. Volovik, JETP Lett. {\bf 58}, 469 (1993).
Yong Ren, Ji-Hai Xu, and C. S. Ting, Int. Mod. Phys.
B {\bf 10}, 2699 (1996).
R. Heeb, A. van Otterlo, M. Sigrist, and G. Blatter,
A. T. Dorsey, Phys. Rev. B {\bf 46}, 8376 (1992).
N. B. Kopnin, B. I. Ivlev and V. A. Kalatsky, J. Low. Temp.
Phys. {\bf 90}, 1 (1993).
N. B. Kopnin, J. Low. Temp. Phys. {\bf 110}, 885 (1998).
A. V. Samoilov, Z. G. Ivanov and L. G. Johansson, Phys.
Rev. B {\bf 49}, 3667 (1994).
L. P. Gor''kov and P. A. Kalugin, JETP Lett. {\bf 41}, 253 (1985).
N. B. Kopnin and G. E. Volovik, JETP Lett. {\bf 64}, 690 (1996).
Y. Sun and K. Maki, Europhys. Lett. {\bf 32}, 355 (1995).
P. A. Lee, Phys. Rev. Lett. {\bf 71}, 1887 (1993).
M. J. Graf, S. K. Yip, J. A. Sauls and D. Rainer, Phys. Rev. B
{\bf 53}, 15147 (1996).
J. J. Vicente Alvarez, D. Dominquez and C. A. Balseriro,
Phys. Rev. Lett. {\bf 79}, 1373 (1997).
T. J. Rieger, D. J. Scalapino and J. E. Mercereau,
Phys. Rev. Lett. {\bf 27}, 1787 (1971).
J. X. Zhu, W. Kim and C. S. Ting, submitted to Phys. Rev. Lett..
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔