|
[1] L. R. Rabiner. "A tutorial on hidden Markov models and selected applications in speech recognition". Proc. IEEE, 77(2) :257-286, 1989. [2] M. Ostendrof. "From HMMs to segninet models: Stochastic modeling for CSR". In Chin- Hui Lee, Frank K. Soong, and Kuldip K. Paliwal, editors, Automatic Speech And Speaker Recognition - Advanced Topics, pages 185-210. Kluwer Academic Publishers, 1996. [3] L. Deng and M. Aksmanovic. "Speaker-independent phonetic classification using hidden Markov models with mixtures of trend functions". IEEE Trans. on Speech and Audio Processing, 5(4):319-324, July 1997. [4] Y. Normandin. "Maximum mutual information estimation of hidden Markov models". In Chin-Hui Lee, Frank K. Soong, and Kuldip K. Paliwal, editors, Automatic Speech And Speaker Recognition - Advanced Topics, pages 57-82. Kluwer Academic Publishers, 1996. [5] C. H. Lee and J. L. Gauvain. "Bayesian adaptive learning and MAP estimation ofHMM". In Chin-Hui Lee, Frank K. Soong, and Kuldip K. Paliwal, editors, Automatic Speech And Speaker Recognition - Advanced Topics, pages 83-108. Kluwer Academic Publishers, 1996. [6] S. Katagiri, C. H. Lee, and B. H. Juang. "New discriminative training algorithms based on the generalized probabilistic descent method". In Proc. IEEE Neural Networks for Signal Process. (NNSP), pages 299-308, 1991. [7] B. H. Juang, W. Chou, and C. H. Lee. "Statistical and discriminative methods for speech recognition". In Chin-Hui Lee, Frank K. Soong, and Kuldip K. Paliwal, editors, Automatic Speech And Speaker Recognition - Advanced Topics, pages 109-132. Kluwer Academic Pub- lishers, 1996. [8] H. Bourlard and N. Morgan. Connectionist speech recognition - A hybrid approach. Kluwer Academic. Publishers, 1994. [9] A. J. Robinson. "An application of recurrent nets to phone probability estimation". IEEE Trans. on Neural Networks, 5(2):298-305, March 1994. [10] D. Kershaw, T. Robinson, and S. Renals. "The 1995 ABBOT LVCSR system for multiple unknown microphones". In Int. Conf. in Spoken Language Processing (ICSLP), 1996. [11] M. Franzini, K. Lee, and A. Waibel. "Connectionist viterbi training: a new hybrid method for continuous speech recognition". In Proc. IEEE Intern. Conf. Acoust., Speech, Signal Process. (ICASSP), volume I, pages 425-428, 1990. [12] S. Renals and et al. N. Morgan. "Connectionist probability estimators in HMM speech recognition". IEEE Trans. on Speech and Audio Processing, 2(1 Pt. 2):161-174, Jan. 1994. [13] R. A. Jacobs, M. 1. Jordan, and A. G. Barto. "Task decomposition through competition in a modular connectionist architecture: the what and where vision tasks". Cognitive Science, 15:219-250,1991. [14] Bart L. M. Happel and Jacob M. J. Murre. "Design and evolution of modular neural network architectures". Neural Networks, 7(6/7):985-1004, 1994. [15] Y. Bengio, R. D. Mori, G. Flammia, and R. Kompe. "Global optimization of a neural network-hidden Markov model hybrid". IEEE Trans. on Neural Networks, 3(2):252-259, March 1992. [16] Y. Bengio. Neural networks for speech and sequence recognition. International Thomson Computer Press, 1996. [17] X. Tu, Y. Yan, and R. Cole. "Matching training and testing criteria in hybrid speech recognition systems". In European Conference on Speech Communication and Technology (Eurospeech), volume 13, pages 1943-1946, 1997. [18] M. Schuster. "Incorporation of HMM output constraints in hybrid NN/HMM systems during training". In European Conference on Speech Communication and Technology (Eu- rospeech), pages 2843-2846,1997. [19] D. Kershaw, T. Robinson, and M. Hochberg. "Context-dependent classes in a hybrid recurrent network-HMM speech recognition system". In Advances in Neural Information Processing Systems (NIPS), 8, pages 750-756. 1996. [20] A. Senior and T. Robinson. "Forward-backward retraining of recurrent neural networks". In Advances in Neural Information Processing Systems (NIPS), 8, pages 743-749. 1996. [21] B. H. Juang, W. Chou, and C. H. Lee. "Minimum classification error rate methods for speech recognition". IEEE Trans. on Speech and Audio Processing, 5(3):257-265, May 1997. [22] C. H. Lee and B. H. Juang. "A survey on automatic, speech recognition with an illustrative example on continuous speech recognition of Mandarin". Computational Linguistics and Chinese Language Processing, l(l):01-36, Aug. 1996. [23] J.K. Chen and Frank K. Soong. "An N-best candidates-based discriminative training for speech recognition application". IEEE Trans. on Speech and Audio Processing, 2(l):206- 216, Jan. 1994. [24] Robert E. Jenkins and Ben P. Yuhas. "A simplified neural network solution through problem decomposition: The case of the truck backer-upper". IEEE Trans. on Neural Networks, 4(4):718-720,1993. [25] M. 1. Jordan and R. A. Jacobs. "Hierarchical mixtures of experts and the EM algorithm". Neural Computation, 6:181-214,1994. [26] Y. Zhao, R. Schwartz, J. Sroka, and J. Makhou. "Hierarchical mixtures of experts method- ology applied to continuous speech recognition". In Advances in Neural Information Pro- cessing Systems (NIPS), 7, pages 859-865. 1995. [27] J. Fritsch, M. Finke, and A. Waibel. "Context-dependent hybrid HME/HMM speech re- cognition using polyphone clustering decision trees". In Proc. IEEE Intern. Conf. Acoust., Speech, Signal Process. (ICASSP), volume 3, pages 1759-1762, 1997. [28] A. Waibel, H. Sawai, and K. Shikano. "Modularity and scaling in large phonemic, neural networks". IEEE Trans. Acoust., Speech and Signal Process, 37(12):1888-1898, 1989. [29] J.B. Hampshire II and A. Waibel. "The Meta-Pi network: building distributed knowledge representations for robust multisource pattern recognition". IEEE Trans. Pattern Analysis and Machine Intelligence, 14:751-769, 1992. [30] 1. C. Jou, M. S. Hu, and Y. T. Juang. "Mandarin syllables recognition based on one class one net neural network with modified selective update algorithm". In Workshop Notes. 1992 IEEE International Workshop on Intelligent Signal Processing and Communication Systems, pages 577-91,1992. [31] 1. C. Jou, M. S. Hu, and Y. T. Juang. "A neural network based speech recognition system for isolated cantonese syllables". In Proc. IEEE Intern. Conf. Acoust., Speech, Signal Process. (ICASSP), volume 4, pages 3269-3272, 197. [32] J. F. Wang, C. H. Wu, S. H. Chang, and J. Y. Lee. "A hierarchical neural network model based on a C/V segmentation algorithm for isolated Mandarin speech recognition". IEEE Trans. on Signal Processing, 39(9):2141-2145, Sep. 1992. [33] S. Renals and M. Hochberg. "Efficient search using phone probability estimates". In Proc. IEEE Intern. Conf. Acoust., Speech, Signal Process. (ICASSP), pages 596-599, 1995. [34] A. Hunt. "Recurrent neural network for syllabification". Speech Communication, 13:323- 332,1993. [35] Y. F. Liao, W. Y. Chen, and S. H. Chen. "Continuous Mandarin speech recognition using hierarchical recurrent neural network". In Proc. IEEE Intern. Conf. Acoust., Speech, Signal Process. (ICASSP), volume 6, pages 3371-3374, 1996. [36] L. S. Lee, C. Y. Tseng, and et al. "Golden Mandarin (1) - a real-time Mandarin speech dictation machine for Chinese language with very large vocabulary". IEEE Trarts. on Speech and Audio Processing, l(2):158-179, 1993. [37] L. S. Lee, C. Y. Tseng, and et al. "Golden Mandarin (II) - an improved single-chip real-time Mandarin dictation machine for Chinese language with very large vocabulary". In Proc. IEEE Intern. Con}. Acoust., Speech, Signal Process. (ICASSP), volume 2, pages 503-506,1993. [38] et al. R. Y. Lyu. "Golden Mandarin (III) - a user-adaptive prosodic-segment-based Man- darin dictation machine for Chinese language with very large vocabulary". In Proc. IEEE Intern. Con}. Acoust., Speech, Signal Process. (ICASSP), volume I, pages 57-60, 1995. [39] H. M. Wang and et al. L. S Lee. "Complete recognition of continuous Mandarin speech for Chinese language with very large vocabulary but limited training data". In Proc. IEEE Intern. Con}. Acoust., Speech, Signal Process. (ICASSP), volume I, pages 61-64, 1995. [40] Lin-ShanLee. "Voice dictation of Mandarin Chinese". IEEE Signal Processing Magazine, pages pp. 17-34,1994. [41] P. C. Chang and B. H. Juang. "Discriminative training of dynamic programming based speech recognizers". IEEE Trans. Speech and Audio Processing, l(2):135-143, 1993. [42] P. C. Chang, S. H. Chen, and B. H. Juang. "Discriminative analysis of distortion sequences in speech recognition". IEEE Trans. Speech and Audio Processing, l(3):326-333, 1993. [43] Saga Chang and Sin-Horng Chen. "Isolated Mandarin syllable recognition using segmental features". IEE Proc.-Vis. Image Signal Process, 142(l):59-64, 1995. [44] Saga Chang and Sin-Horng Chen. "A modified hidden seni-Markov model for multi-speaker Mandarin syllable recognition". Journal of the Chinese Institute of Electrical Engineering, l(2):95-104,1994. [45] E.F. Huang, H.C. Wang, and F. K. Soong. "A fast algorithm for large vocabulary keyword spotting application". IEEE Trans. on Speech and Audio Processing, 2(3):449-452, July 1994. [46] E.F. Huang and H.C. Wang. "An efficient algorithm for syllable hypothesization in con- tinuous Mandarin speech recognition". IEEE Trarts. on Speech and Audio Processing, 2(3):446-448, July 1994. [47] C. C. Huand and J. F. Wang et. al. "A Mandarin speech dictation system based on neural network and language processing model". IEEE Trans. on Consumer Electronics, 40(3), Aug. 1994. [48] P. C. Chang, S. W. Sue, and S. H. Chen. "Mandarin tone recognition by multi-layer perceptron". In Proc. IEEE Intern. Con}. Acoust., Speech, Signal Process. (ICASSP), pages 517-520,1990. [49] Y. R. Wang, J. M. Shieh, and S. H. Chen. "Tone recognition of continuous Mandarin speech based on hidden Markov model". Int. J. Pattern Recog. Artific. Intell., 8:233-246, 1994. [50] Y. R. Wang and S. H. Chen. "Tone recognition of continuous Mandarin speech assisted with prosodic information". J. Accoust. Soc. Am., 96(5 Pt. l):2637-2645, Nov. 1994. [51] Y. R. Wang and S. H. Chen. "Tone recognition of continuous Mandarin speech based on neural network". IEEE Trans. on Speech and Audio Processing, 3(2): 146-150, Mar. 1995. [52] H. Ney, D. Mergel, A. Noll, and A. Paeseler. "A data-driven organization of the dynamic programming beam search for continuous speech recognition". In Proc. IEEE Intern. Con}. Acoust., Speech, Signal Process. (ICASSP), pages 833-836, 1987. [53] P. S. Gopalakrishnan, L. R. Bahl, and R. L. Mercer. "A tree search strategy for large- vocabulary continuous speech recognition". In Proc. IEEE Intern. Con}. Acoust. Speech, Signal Process. (ICASSP), pages 572-575, 1995. [54] R. Haeb-Umbach and H. Ney. "Improvements in beam search for 10000-word continuous- speech recognition". IEEE Trans. on Speech and Audio Processing, 2(2):353-356, 1994. [55] B. Atal and L. Rabiner. "A pattern recognition approach to voiced-unvoiced-silence classi- fication with applications to speech recognition". IEEE Trans. on Acoust., Speech, Signal Processing, 24:201-212, Jun. 1976. [56] Y. Qi and B. R. Hunt. "Voiced-unvoiced-silence classification of speech using hybrid feature and a network classifier". IEEE Trarts. on Speech and Audio Processing, l(2):250- 255,1993. [57] B. Ma and et al. T. Huang. "Context-dependent acoustic models for Chinese speech recog- nition". In Proc. IEEE Intern. Con}. Acoust., Speech, Signal Process. (ICASSP), volume I, pages 455-458,1996. [58] J. L. Einian. "Finding structure in time". Cognitive Science, 14:179-211, 1990. [59] T. W. Cacciatore and S. J. Nowlan. "Mixtures of controllers for jump linear and nonlinear plants". In Advances in Neural Information Processing Systems (NIPS), 6, pages 719-726. 1994. [60] Y. Bengio and P. Frasconi. "An input output HMM architecture". In Advances in Neural Information Processing Systems (NIPS), 7, pages 427-434. 1995. [61] A. Kehagial and V. Petridis. "Predictive modular neural networks for time series classifi- cation". Neural Networks, 10(l):31-49,1997. [62] W. Y. Chen, Y. F. Liao, and S. H. Chen. "Speech recognition with hierarchical recurrent neural networks". Pattern Recognition, 28(6) :795-805, 1995. [63] S.J. Lee, K.C. Kirn, H. Yoon, and J.W. Cho. "Application of fully recurrent neural networks for speech recognition". In Proc. IEEE Intern. Con}. Acoust., Speech, Signal Process. (ICASSP), pages 77-80,1991. [64] M. M. Hochberg, G. D. Cook, S. J. Renals, and A. J. Robinson. "Connectionist model combination for large vocabulary speech recognition". In Proc. of Intel. Con}, on Spoken Language Processing, pages 1499-1502, 1994. [65] J.D. Markel and A.H. Gray Jr. Linear prediction of speech. Springer-Verlag Berlin Heidel- berg, 1976. [66] H. C. Wang; H. F. Pai. "Recognition of Mandarin syllables based on the distribution of two-dimensional cepstral coefficients". International Journal of Pattern Recognition and Artificial Intelligence, 8(l):247-57,1993. [67] L. Rabiner and B. H. Juang. Fundamentals of speech recognition. Prentice Hall interna- tional Inc., 1993. [68] D.Burshtein. "Robust parametric modeling of durations in hidden Markov models". IEEE Trans. on Speech and Audio Processing, 4(3):240-242, May 1996. [69] H. Y. Gu, C. Y. Tseng, and L. S. Lee. "Isolated-utterance speech recognition using hid- den Markov models with bounded state duration". IEEE Trans. on Signal Processing, 39(8):1743-1752, Aug. 1991. [70] S. H. Chen, Y. F. Liao, S. M. Chiang, and S. Chang. "An RNN-based pre-classification method for fast continuous Mandarin speech recognition". IEEE Trans. on Speech and Audio Processing, 6(l):86-90, Jan. 1998. [71] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. "Learning internal representations by error propagation". In D. E. Rumelhart, J, and L. McClelland, editors, Parallel Distributed Processing, volume I, pages 318-362. Cambridge, MA: MIT Press, Bradford Books, 1986. [72] Yuan-Fu Liao, Wern-Jun Wang, Shu-Ling Lee, and Sin-Horng Chen. "A first study on Mandarin prosodic state detection". In Proceedings of ROCLING X International Confer- ence 1997 Research on Computational Linguistics, pages 399-411, Aug. 1997. [73] Yuan-Fu Liao, Wern-Jun Wang, and Sin-Horng Chen. "A first study on prosodic modeling of Mandarin speech for recognition". In Proc. Intern. Symp. on Multimedia Information Processing (ISMIP), pages 94-101, Dec. 1998. [74] Wei-Tyng Hong and Sin-Horng Chen. "An RNN-based noise estimation and likelihood compensation for noisy speech recognition". In Proc. IEEE 1996 Workshop on Neural Networks for Signal Processing, pages 293-301, 1996. [75] Wei-Tyng Hong and Sin-Horng Chen. "A robust RNN-based pre-classification for noisy Mandarin speech recognition". In European Conference on Speech Communication and Technology (Eurospeech), volume 3, pages 1083-1086, 1997. [76] P. R. Lu, W. T. Hong, S. L. Chiang, Y. R. Wang, and S. H. Chen. "A prototype of a mandarin speech telephone number inquiry system". In Proc. of 1997 International Con}. on Consumer Electronics, 1997. [77] Wei-Tyng Hong, Yuan-Fu Liao, Yih-Ru Wang, and Sin-Horng Chen. "RNN-based noisy speech segmentation for pine-based noisy Mandarin base-syllable recognition". Submit to J. Accoust. Soc. Am. [78] Wei-Tyng Hong and Sin-Horng Chen. "A robust training algorithm for adverse Mandarin speech recognition". Submit to Speech Communication. [79] T. Komori and S. Katagiri. "GPD training of dynamic programming-based speech recog- nizers". J. Acoust. Soc. Jpn. (E), 13(6) :341-349, 1992.
|