(34.201.11.222) 您好!臺灣時間:2021/02/25 05:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂坤樹
研究生(外文):Leu Kuen-Shuh
論文名稱:雙網路/對等節點架構之分波多工網路
論文名稱(外文):Dual Networks Twin Nodes Architecture for WDM Networks
指導教授:高銘盛
指導教授(外文):Ming Seng Kao
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:89
中文關鍵詞:雙網路對等節點架構輻射型網路分波多工網路波長重用等待時間平均步數環型網路星狀型網路
外文關鍵詞:DNTN structureRadiation NetworkWDMWavelength reuseWaiting timeMean hop numberRing NetworkStar Network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們介紹一新型光纖網路架構,並根據其特性將之命名為雙網路/對等節點架構 (DNTN)。此架構的概念源於將現有許多獨立的小型區域網路 (LAN)或中型都會網路 (MAN),連結成一個有效率且高可靠度的大型廣域網路(WAN)。 一般而言,這些區域網路或都會網路各有其不同之需求,可能沒有相同的網路架構及封包傳遞協定。但藉由雙網路/對等節點架構,我們可以簡單而有效率地將已有的區域網路或都會網路,串連成大型廣域網路,並且對原有各網路運作不會產生明顯干擾。
許多常見的網路結構,如RING、STAR、perfect Shuffle及Manhattan street網路等,都可以在DNTN架構中被採用。在這些不同的組合中,我們發現到有些傳統網路以DNTN架構組合起來後,具有高可靠度,低平均傳送距離,及簡單封包傳遞協定等優點。輻射型網路(Radiation Network)便是我們所提出,一種以DNTN架構之方法,結合環型網路(Ring Network)及星型網路(Star Network)而成之新型網路。
從本論文的分析結果中,我們瞭解DNTN架構可以選用許多不同的封包傳遞協定,來改善整個系統的等待時間(system waiting time),以提高網路的效率。而且由於DNTN架構帶來波長重用(wavelength reuse)的特性,可以使網路節點具有更高的資料處理能力。這些優點,使得我們所提出的輻射型網路,非常適合波長分工的廣域光纖網路之用。我們將在論文中仔細討論波長分工規劃下的輻射型網路,呈現其互補環型網路及星型網路之優缺點的特性,說明依DNTN架構概念所建構而成的輻射型網路,確實是非常適合未來光纖網路規劃的新型結構。

In this paper, we present a novel approach dedicated for planning optical networks, the Dual Networks Twin Nodes (DNTN) architecture. It originates from the consideration to efficiently and reliably connect many existing, blooming, ever independent but now closely correlated local area networks (LAN) or metropolitan area networks (MAN). To meet the individual requirements, these LAN/MAN do not always have the same topologies and routing algorithms. By adopting the proposed DNTN architecture, we may simply connect these existing LAN/MAN into a wide area network (WAN) with little interference on the existing network operation.
Many familiar network topologies, such as ring, star, perfect shuffle and Manhattan street networks etc., could be adopted in the DNTN structure. We find that some excellent combinations can achieve high reliability, low mean hop distance as well as simple routing algorithm. We further propose a Radiation network constructed from a ring and a star subnetwork, being a novel network topology in the sense of DNTN architecture.
A wavelength-division multiplexing (WDM) based Radiation network is studied in this paper. The Radiation network shows the merits that each subnetwork actually takes advantage of the other's special feature to compensate its own weakness. Thus the construction turns out to be perfect combination of ring and star networks. From the analysis results, we see that alternative routing algorithms can be employed to improve the system waiting time. Every node can also have higher service capability because of the possibility of wavelength reuse in the construction. Especially, the proposed Radiation network could be an excellent candidate for WDM-based wide area networks.

Chinese Abstracti
English Abstractiii
Acknowledgement v
Contentsvi
Lists of Tablesviii
Lists of Figures ix
1 Introduction 1
2 Performance of Four Multihop Topologies 4
2.01 The Ring Topology4
2.02 The Star Topology6
2.03 The Shuffle Network 7
2.04 The Manhattan Street Network 9
3 Static Performance Analyses of the DNTN Constructions 11
3.01 The DNTN network composed of two 64-node Rings 12
3.02 The DNTN network composed of two 64-node Stars 14
3.03 The DNTN network composed of two 64-node SN's 16
3.04 The DNTN network composed of two 64-node MSN's 19
3.05 The DNTN network of 64 Star + 64 Ring 22
3.06 The DNTN network of 64 Star + 64 SN 25
3.07 The DNTN network of 64 Star + 64 MSN 28
3.08 The DNTN network of 64 Ring + 64 SN 30
3.09 The DNTN network of 64 Ring + 64 MSN 33
3.10 The DNTN network of 64 Shuffle Network + 64 MSN 36
4 DNTN on WDM40
4.01 A New Topology : the Radiation network 40
4.1.1 The Wheel Routing Algorithm 42
4.02 The Open Jackson Network Model 43
4.03 Special Routing Case : Wheel Routing in both Ring & Star 45
4.3.1 Model Transformation 46
4.3.2 Steady-State Analyses 57
4.3.3 Analysis Results 60
4.04 The Proposed Routing : Wheel + Passive Star 65
4.4.1 Model Analyses 66
4.4.2 Analysis Results 76
5 Conclusions85
Bibliography87

[1] Mansour I, Irshid and Mohsen Kavehrad, "A Fully Transparent Fiber-Optic Ring Architecture For WDM Networks," Journal of Lightwave Techmology, vol.10, no.1, January 1992.
[2] L. Wuttisittikulkij and M.J. O'Mahony, "Design of a WDM Network using a Multiple Ring Approach," 1997 IEEE.
[3] Ori Gerstel, Philip Lin and Galen Sasaki, "Wavelength Assignment in a WDM Ring to Minimize Cost of Enbedded SONET Rings," 1998 IEEE.
[4] L.G. Kazovsky and P. T. Poggiolini, "STARNET:A Multi-gigabit-per-second Optical LAN Utilizing a Passive WDM Star," Journal of Lightwave Technology, vol.11, no.5/6, May/June 1993.
[5] Bo Li and Aura Ganz, "Virtual Topologies For WDM Star LAN's - The Regular Structures Approach," IEEE INFOCOM'92.
[6] G. N. M Sudhakar, M. Kavehrad and N. D. Georganas, "Access Protocols For Passive Optical Star Networks," Computer Networks and ISDN System 26 (1994).
[7] Michael G. Hluchyj and Mark J. Karol, "ShuffleNet:An Application Of Generalized Perfect Shuffles To Multihop Lightwave Networks," Journal of Lightwave Technology, vol.9, no.10, October 1991.
[8] Seung-Woo Seo, Paul R. Prucnal and Hisashi Kobayashi, "Generalized Multihop Shuffle Networks," IEEE Transcations on Communications, vol.44, no.9, September 1996.
[9] Seu-Woo Seo, Paul R. Prucnal, Hisashi Kobayashi, and James B. Lim, "On the performance of a Class of Multihop Shuffle Networks," 1995 IEEE, pp. 1211-1215.
[10] Jack Brassil, Abhijit K. Choudhury and Nicholas F. Maxemchuk, "The Manhattan Street Network:A High Performance, Highly Reliable Metropolitan Area Network," Computer Networks and ISDN Systems 26 (1994), pp. 841-858.
[11] M. Ajmone Marsan, G. Albertengo, A. Francesa, E. Leonardi and F. Neri, "All-Optical Bidirectional Manhattan Networks," ICC'92, pp.1461-1467.
[12] G. Alberttengo, R. Lo Cigno and G. Panizzardi, "Optimal Routing Algorithms For The Bidirectional Manhattan Street Network," ICC'91, pp.1676-1680.
[13] Biswanath Mukherjee, "WDM-Based Local Lightwave Networks Part I:Single-Hop Systems," IEEE Network, May 1992.
[14] Biswanath Mukherjee, "WDM-Based Local Lightwave Networks Part II:Multihop Systems," IEEE Network, June 1992.
[15] Peter Davids, Thomas Meuser and Otto Spaniol, "FDDI:status and perspectives," Computer Networks and ISDN System 26 (1994), pp.657-677.
[16] N.f. Maxemchuk, "Comparison of Deflection and Store-and-Forward Techniques in the Manhattan Street and Shuffle-Exchange Networks," 1989 IEEE, pp.800-809.
[17] F. Ayadi, J. F. Hayes and M. Kavehrad, "A WDM Cross-Connect Star Topology for The Bilayered ShuffleNet," CCECE/CCGEI '93, pp.1115-1118.
[18] Duanyang Guo and Anthiny S. Acampora, "Scalable Multihop WDM Passive Ring with Optical Wavelength Assignment and Adaptive Wavelength Assignment and Adaptive Wavelength Routing," Journal of Lightwave Technology, vol.14, no.6, June 1996.
[19] Thilo Gipser and Min-Seng Kao, "An All-Optical Network Architecture," Journal of Lightwave Technology, vol. 14, no. 15, May 1996.
[20] Paul E. Green, "Optical Networking Update," IEEE Journal on Selected Areas In Communications, vol. 14, no. 15, June 1996.
[21] Harmem R. van AS and Harry Rudin, "Media-Access Techniques For High-Speed LANs and MANs," Conputer Networks and ISDN System 26 (1994), pp.601-602.
[1] Charles A. Brackett, "Dense Wavelength Division Multiplexing Networks:Principles and Applications," IEEE Journal on Selected Areas In Communications, vol. 8, no. 6, August 1990.
[23] J. M. and S. D. Cusworth, "Wavelength Division Multiplexing in Optical Fibre Sensor Systems and Networks:a review," Optics and Laser Technology, vol.22, no.2, 1990.
[24] Donald H. McMahon, "Doing Wavelength Division Multiplexing with Today's Technology," IEEE LTS, February 1992.
[25] Biswanath Mukherjee, Dhritiman Banerjee, S. Ramamurthy and Amarnath Mukherjee, "Some Principles for Designing a Wide-Area WDM Optical Network," IEEE/ACM Transactions of Networking, vol. 4, no. 5, October 1996.
[26] Shiu C. Chan, MingHua Lu, Satish S. Udpa, Lalita Udpa and Doug W. Jacobson, "All-Optical Dense WDM Wide-Area Communication Networks," 1997 IEEE, pp.1157-1161
[27] Soeren L. Danielsen, Carsten Joergensen, Benny Mikkelsen and Kristian E. Stubkjaer, "Optical Packet Switched Network Layer Without Optical Buffers," IEEE Photonics Technology Letters, vol. 10, no. 6, June 1998.
[28] Rajiv Ramaswami and Kumar N. Sivarajan, "Routing and Wavelength Assignment in All-Optical Networks," IEEE/ACM Transactions on Networking, vol. 3, no. 5, October 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔