|
[1] E. B. Becker, G. F. Carey and J. T. Oden, Finite Elements An Introduction Volume I, Prentice Hall, 1981. [2] P. G. Ciarlet and J. L. Lions, Automatic Mesh Generation Application to Finite Element Methods, Wiley Editorial Offices, 1991. [3] S. Ratnajeevan H. Hoole, Computer-Aided Analysis and Design of Electromagnetic Devices, Elsevier, 1989. [4] F. P. Preparata and M. L. Shamos, Computational Geometry An Introduction, Springer-Verlag, 1985. [5] D. T. Lee and B. J. Schachter, “Two Algorithms for Constructing a Delaunay Triangulation,” Internal Journal of Computer and Information Sciences, vol 3,pp.219-242, 1980. [6] Y. Lu and W. W. Dai, ”A Number Stable Algorithm for Constructing Constrained Delaunay Triangulation and Application to Multichip Module Layout,” International Conference on Circuits and Systems, June 1991. [7] J. F. Lee and R. D. Romanus, ”Automatic Mesh Generation Using a Modified Delaunay Tessellation,” IEEE Antennas and Propagation Magazine, Vol. 39, No. 1, February 1997. [8] Rex A. Dwyer, “A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations,” Algorithmica, vol. 2,no. 2,pp. 137-151,1987. [9] J. R. Shewchuk, ”Triangle:Engineering a 2D Quality Mesh Generator and Delaunay Triangulator,” First Workshop on Applied Computational Geometry, pp. 124-133, ACM, May 1996. [10] J. Ruppert, “A Delaunay Refinement Mesh Generation,” Journal of Algorithms, vol.18 no. 3, pp.548-585, May 1995. [11] L. P. Chew, “Constrained Delaunay Triangulation,” Algorithmica, vol.4, pp.97-108, 1989. [12] J. S. Young, “Adjacency for Grid Generation and Grid Adaptation in Delaunay Traingulation,” Comput. Methods Appl. Mech. Engrg., vol. 150, pp. 57-64, 1997. [13] Y. C. Zhang, J. J. Yin and L. Luo, “ A Two-dimensional Mesh Generator with Boundary Conditions Generation,” Computers & Structures, vol. 46, no. 1, pp. 175-181, 1993. [14] J. C. Tipper, “Fortran Programs to Construct the Planar Voronoi Diagram,” Computers & Geosciences, vol. 17, no. 5, pp. 597-632, 1991. [15] T. Lambert, “An Optimal Algorithm for Realizing a Delaunay Triangulation,” Information Processing Letters, vol. 62, pp. 245-250, 1997. [16] P. Su, R. L. S. Drysdale, “A Comparison of Sequential Delaunay Triangulation Algorithms,” Computational Geometry, vol. 7, pp. 361-385, 1997.
|