(18.210.12.229) 您好!臺灣時間:2021/02/26 08:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇紋楓
研究生(外文):David Wen-Fong Su
論文名稱:嵌入於損耗性介質之絕緣式同軸狹縫天線的分析與設計
論文名稱(外文):Design and analysis of insulated coaxial slot antenna embedded in dissipative medium
指導教授:吳霖
指導教授(外文):Lin-Kun Wu
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:100
中文關鍵詞:細胞間質微波熱療平移對稱特性細線幅射積分非對稱饋入絕緣式同軸狹縫天線輸入阻抗增強式頭端加熱
外文關鍵詞:interstitial microwave hyperthermiatrsanslational symmetrythin-wire approxaimationasymmetrically-fed insulated coaxial slot antennainput impedanceenhanced tip-heating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一系統性設計方法用以探討植入型微波熱療系統中之絕緣式天線的設計問題。首先,利用平移對稱特性(translational symmetry property)配合細線幅射積分(thin-wire radiation integrals)來提昇計算效率之快速演算法則將被詳細介紹。此一演算法則將可決定嵌入於損耗介質中的絕緣式偶極天線的近場特性。從我們的分析結果顯示,基本型的細線幅射積分比傳統的King-Casey方法快了380倍。而利用平移對稱特性配合細線幅射積分的分析方法又比單純的細線幅射積分方法快了7倍。接著,由King等人所發展的類傳輸線輸入阻抗模型用以計算嵌入於損耗介質中的絕緣式偶極天線的輸入阻抗,將被擴展到絕緣式同軸狹縫天線的分析。從實際結構觀察, 絕緣式同軸狹縫天線在結構上多了存在於三軸同軸電纜內部之電流路徑。此一內部電流路徑將導致天線共振長度的縮短。此一效應將在我們所提出的阻抗模型中加以探討。同時,簡單的輸入阻抗匹配最佳化的方法亦加以描述。最後,利用非對稱饋入絕緣式同軸狹縫天線設計出同時具有優異的阻抗匹配及增強式頭端加熱(enhanced tip-heating)特性的植入型微波熱療隔離式天線。理論與實驗數據的一致性將對此一設計分析方法提出最佳佐證。
In this dissertation, a systematic method of designing insulated applicators for interstitial microwave hyperthermia is presented. First of all, a fast algorithm that exploits the translational symmetry properties associated with a thin-wire radiation integral to improve its computational efficiency for determining the near-field characteristics of an insulated dipole antenna (IDA) embedded in a homogeneous dissipative medium is described. In one case investigated, the basic thin-wire approach that uses no symmetry property is found to yield accurate results in approximately 380 times less CPU time than the traditional King-Casey approach. In another case, use of symmetry property further reduces the CPU time by a factor of 7; additional reduction in CPU time is also possible by taking into account the near-field nature of the problem.
Subsequently, transmission-line-approximation type of input impedance model originally developed by King et al. [4] for the interstitial dipole antenna embedded in a conductive medium is extended to the case of insulated coaxial slot antenna (ICSA). Physical construction of the later indicates the presence of additional current path(s) inside the feed line of the triaxial cable which shall lead to the shortening of its resonance length. This effect is taken into account in the impedance model and verified to be accurate by experiments. Furthermore, a simple strategy for optimizing the applicator’s impedance matching performance is also described. Excellent agreements observed between theoretical and measured data indicate that these models can be relied upon when designing efficient applicator for interstitial microwave hyperthermia.
Finally, a novel use of asymmetrically-fed ICSA type of applicator for interstitial microwave hyperthermia that simultaneously exhibits good impedance matching and enhanced tip-heating performances is presented. Theoretical analysis reveals that by making the distal arm much shorter than the proximal arm of the antenna, charge densities distributed over the distal arm of the antenna increase significantly. This in turn can result in the radial electric field component becoming the dominant contributor to the specific absorption rate (SAR) over the distal arm side of the heating region and, therefore, the achievement of enhanced tip-heating performance. With the length of the longer proximal arm chosen to be slightly longer than a quarter wavelength, good impedance matching and enhanced tip-heating performances are achieved when the length of the shorter distal arm is reduced to no more than 25% that of the longer proximal arm. Good agreements observed between theoretical and measured SAR patterns for two ICSAs designed for operation at 915- and 433-MHz, respectively, confirm the validity of the design method.
Cover
Chinese Abstract
Abstract
Acknowledgements
Table of Contents
List of Figures
CHAPTER 1. INTRODUCTION
1.1 Objective
1.2 Literature Review
1.3 Contributions
1.4 Chapter Outlines
CHAPTER 2. COMPUTATION OF THE RADIATED ELECTRIC FIELD AND THE SAR DISTRIBUTION
2.1 King-Casey Approach
2.2 Iskander-Tumeh Approach
2.3 Thin-Wire Radiation Integrals and Translational Symmetry Algorithm
2.4 Numerical Results
CHAPTER 3. INPUT IMPEDANCE CHARACTERISTICS OF INSULATED COAXIAL SLOT ANTENNAS
3.1 Insulated Dipole Antenna (IDA)
3.2 Insulated Coaxial Slot Antenna-I (ICSA-I)
3.3 Insulated Coaxial Slot Antenna-II(ICSA-II)
3.4 An Optimization Strategy for Antenna Design
3.5 SAR Measurements
3.6 Numerical lResults and Experimental Verifications
CHAPTER 4. DESIGN AND ANALYSIS OF AN ASYMMETRICALLY-FED ICSA-II WITH ENHANCED TIP-HEATING PERFORMANCE
4.1 Theoretical Analysis
4.2 Experimental Results
CHAPTER 5. CONCLUSIONS AND RECOMENDATIONS
REFERENCES
[1]B. E. Lyons, R. H. Britt, and J. W. Strohbehn, “Localized hyperthermia in the treatment of malignant brain tumors using an interstitial microwave antenna array,” IEEE Trans. Biomed. Eng., vol. BME-31, pp. 53—62, Jan. 1984.
[2]A. M. Tumeh and M. F. Iskander, “Performance comparison of available interstitial antennas for microwave hyperthermia,” IEEE Trans. Microwave Theory Tech., vol. MTT-37, pp. 1126—1133, Jul. 1989.
[3]D. Despretz, J.-C. Camart, C. Michel, J.-J. Fabre, B. Prevost, J.-P. Sozanski, and M. Chive, “Microwave prostatic hyperthermia: interest of urethral and rectal applicators combination─theoretical study and animal experimental results,” IEEE Trans. Microwave Theory Tech., vol. MTT-44, pp. 1762—1767, Oct. 1996.
[4]R. W. P. King, B. S. Trembly, and J. W. Strohbehn, “The electromagnetic field of an insulated antenna in a conducting or dielectric medium,” IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp. 574—583, Jul. 1983.
[5]J.-C. Camart, J.-J. Fabre, B. Prevost, J. Pribetich, and M. Chive, “Coaxial antenna array for 915 Mhz interstitial hyperthermia: design and modelization─power deposition and heating pattern─phased array,” IEEE Trans. Microwave Theory Tech., vol. MTT-40, pp. 2243—2250, Dec. 1992.
[6]P. S. Debicki and M. A. Astrahan, “Calculating input impedance of electrically small insulated antennas for microwave hyperthermia,” IEEE Trans. Microwave Theory Tech., vol. MTT-41, pp. 357—360, Feb. 1993.
[7]M. F. Iskander and A. M. Tumeh, “Design optimization of interstitial antennas,” IEEE Trans. Microwave Theory Tech., vol. MTT-36, pp. 238—246, Feb. 1989.
[8] Yang Zhang, N. V. Dubal, R. Takemoto-Hambleton, and W. T. Joines, “The determination of the electromagnetic field and SAR pattern of an interstitial applicator in a dissipative dielectric medium,” IEEE Trans. MicrowaveTheory Tech., vol. MTT-36, pp. 1438—1443, Oct. 1988.
[9] J. P. Casey and R. Bansal, “The near field of an insulated dipole in a dissipative dielectric medium,” IEEE Trans. Microwave Theory Tech. Vol. 34, pp. 459—463, Apr. 1986.
[10] K. L. Clibbon and A. McCowen, “Efficient computation of SAR distributions from interstitial microwave antenna arrays,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 595—600, Apr. 1994.
[11] G. B. Gentili, M. Leoncini, B. S. Trembly, and S. E. Schweizer, “FDTD electromagnetic and thermal analysis of interstitial hyperthermic applicators,” IEEE Trans. Biomed. Eng., vol. 42, pp. 973—980, Oct. 1995.
[12] J.-C. Cammart and D. Despretz, M. Chieve, and J. Pribetich, “Modeling of various kinds of applicators used for microwave hyperthermia based on the FDTD method.” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1811—1818, Oct. 1996.
[13] G. Schaller, J. Erb and R. Engelbrecht, “Field simulation of dipole antennas for interstitial microwave hyperthermia,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 887—895, Jun. 1996.
[14] M. Bartsch et al., “Finite integration: eiu universell anwendbares verfahren zur berechnung elektromagnetischer felder,” VDE-Fachbericht, vol. 45, p. 109, 1993.
[15] T. Weiland, “Die diskretisierung der maxwell-gleichungen,” Phys. Bl., vol. 42, no. 7, p. 191, 1986.
[16] ──, MAFIA Version 3.2-The ECAD System-Userguide, The MAFIA Collaboration, Ohlystraβ 69, 64285 Darmstadt, 1994.
[17] W. Hurter, F. Reinbold, and W. J. Lorenz, “A dipole antenna for interstitial microwave hyperthermia,” IEEE Trans. Microwave Theory Tech., vol. MTT-39, pp. 1048—1054, Jun. 1991.
[18] D. W.-F. Su and L. K. Wu, “Input impedance characteristics of coaxial slot antennas for interstitial microwave hyperthermia,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 302—307, Mar. 1999.
[19] L. K. Wu, D. W.-F. Su, and B.-C. Tseng, “A fast algorithm for computing field radiated by an insulated dipole antenna in dissipative medium,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2290—2293, Dec. 1996.
[20] F. Turner, “Interstitial equal-phased arrays for EM hyperthermia,” IEEE Trans. Microwave Theory Tech., vol. 34, pp-. 572—578, May 1986.
[21] R. W. King and G. S. Smith, Antenna in Matter. Cambridge, MA: M.I.T. Press, 1981, Ch. 1.
[22] F. Harrington, Time Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961, p. 79.
[23] R. W. P. King, “Asymmetrically driven antennas and the sleeve dipole,” Proc. I.R.E., pp. 1154—1164, Oct. 1950.
[24] R. Peloso, D. T. Tuma and R. K. Jain, “Dielectric properties of solid tumors during normothermia and hyperthermia,” IEEE Trans. Biomed. Eng., vol. 31, pp. 725—728, Nov. 1984.
[25] M. Yeh, B. S. Trembly, E. B. Douple, T. P. Ryan, P. J. Hoopes, E. Jonsson and J. Heaney, “Theoretical and experimental analysis of air cooling for intracavitary microwave hyperthermia applicators,” IEEE Trans. B.E., vol. 41, no. 9, pp. 874—882, Sep. 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔