跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃永亮
研究生(外文):Yung-Liang Huang
論文名稱:數位行動無線電通訊之同步方法
論文名稱(外文):Synchronization Methods in Digital Mobile Radio Communications
指導教授:黃家齊黃家齊引用關係
指導教授(外文):Chia-Chi Huang
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:91
中文關鍵詞:同步高斯最小相移鍵頻率正交分割多工快速傅立葉轉換符號時序頻率偏移前序保護間隔
外文關鍵詞:SynchronizationGaussian Minimum Shift Keying (GMSK)Orthogonal Frequency Division Multiplexing (OFDM)Fast Fourier Transform (FFT)Symbol TimingFrequency OffsetPreambleGuard Interval
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
在這本論文中,我們探討了兩種用於數位行動無線電通訊之同步方法,並且分別在採用高斯最小相移鍵 (Gaussian Minimum Shift Keying, GMSK) 及頻率正交分割多工 (Orthogonal Frequency Division Multiplexing, OFDM) 等調變方式的系統中評估這兩種同步方法。
首先,我們提出一種全數位式,可共同完成頻率偏移補償及符號時序恢復之非同調 (noncoherent) 及同調 (coherent) GMSK接收器架構。當採用同調解調變時,所須之載波相位偏移也可被估計出來。
接收到的基頻複數訊號先經頻率鑑別,再經過執行快速傅立葉轉換 (Fast Fourier Transform, FFT) 的數位濾波器;頻率偏移即可從FFT的直流項算出,而符號時序錯誤可從FFT的某一特殊頻率之相位角度算出,此頻率為位元傳輸率之一半之整數倍。這兩估計參數則可用來在前序 (preamble) 時期中做頻率偏移補償及符號時序恢復。在前序時期中做完頻率偏移補償後,則可以平均同相及正交相訊號來估算出粗略載波相位。我們以計算機模擬,在加成性白高斯雜訊 (additive white Gaussian noise, AWGN) 通道中評估這個 GMSK 接收器架構的位元錯誤率 (bit error rate, BER) 效能。計算機模擬結果顯示,當採用非同調解調變時,我們的接收器僅需12位元的訓練前序,故適用於叢發型 (burst-mode) 數據通訊;當採用同調解調變時,此接收器亦可達較佳之 BER 效能。
接著,我們提出一種可用於歐洲Eureka 147數位廣播系統中,共同完成符號、時框、及載波同步之方法。Eureka 147 採用OFDM調變。我們先讓保護間隔 (guard interval) 中之訊號與有效訊號之最後四分之一訊號做複數相乘,符號時序可藉偵測此相乘值 (亦即相似訊息) 的相位角度的突變估計出。此突變之偵測是基於最大相似度 (maximal likelihood, ML) 法則。分數載波間隔 (fractional carrier spacing) 之頻率偏移是在估出符號時序後,從上述相乘值之相位角度算出。粗略時框同步及虛符號之偵測可同樣地藉該相似訊息估計出。整數載波間隔 (integral carrier spacing) 之頻率偏移是藉接收到的相位參考符號與本地產生但已做頻率移之相位參考符號做迴旋 (convolution) 後決定出。我們發現保護間隔之長度是此同步演算法中最重要的參數。計算機模擬結果顯示,這個同步方法之BER 效能在 AWGN 通道及兩路瑞雷衰減 (two-path Rayleigh fading) 通道中趨近於理想同步。
In this dissertation, we investigate two different synchronization methods for digital mobile radio communications. The two methods are evaluated on systems that adopt Gaussian minimum shift keying (GMSK) modulation and Orthogonal Frequency Division Multiplexing (OFDM) modulation, respectively.
We first proposed a fully digital noncoherent and coherent GMSK receiver architecture with joint frequency offset compensation and symbol timing recovery. Carrier phase offset can be estimated when the coherent demodulation mode is adopted.
The down converted complex signal is first frequency discriminated and then passed through a digital filter that performs a Fast Fourier Transform (FFT). The frequency offset can be estimated from the DC component of the FFT and the symbol timing error can be estimated from the phase angle of the FFT at a specified frequency which is equal to an integral multiple of half the bit rate. These two estimated parameters are then used for frequency offset compensation and symbol timing recovery during a preamble period. Coarse carrier phase can be estimated by averaging sampled in-phase and quadrature-phase signals and finding its phase angle within the preamble period after carrier frequency offset is estimated and compensated. The BER performance of this GMSK receiver architecture is assessed for an AWGN channel by computer simulation. Simulation results show that our receiver requires only a 12 bits of training preamble in the noncoherent demodulation mode and its performance is suitable for burst-mode data communications. This receiver architecture can also achieve better BER performance with coherent detection.
Next, we presented a joint symbol, frame, and carrier synchronization method for the Eureka 147 digital audio broadcasting (DAB) signal that adopts OFDM modulation.
Symbol timing is determined first by detecting an abrupt change in the phase angle of the complex product between the last quarter of a useful symbol and its cyclic extension in the guard interval. The detection of this abrupt change is based on the maximal likelihood (ML) principle. Frequency offset of fractional carrier spacing is estimated from the phase angle of the autocorrelation after symbol timing is estimated. Coarse frame synchronization and null symbol detection can also be achieved through this correlation information. Frequency offset of integral carrier spacing is determined from the convolution outputs between a received phase reference symbol and several locally generated but frequency shifted phase reference symbols. We found the length of a guard interval is the most important parameter for the synchronization algorithm to work. Simulation results show that the performance of this synchronization method approaches to the ideal synchronization case in both an AWGN channel and a two-path Rayleigh fading channel.
封面
1 Introduction
1.1 Digital Mobile Radio Communications
1.2 Motivation of This Dissertation
1.3 Organization of This Dissertation
2 The Mobile Radio Channel
2.1 Characteristics of a Mobile Radio Channel
2.2 Channel Models Used
3 Synchronization for GMSK
3.1 Introduction
3.2 The Synchronization Algorithm
3.3 Application to GMSK
3.4 An Adaptive Receiver Architecture
3.5 Simulation Results and Receiver Performance
3.6 Concluding Remarks
4 Synchronization for OFDM
4.1 Introduction
4.2 System Impacts from Synchronization Defects
4.3 A New Synchronization Method for OFDM Systems
4.4 Simulation Results
4.5 Concluding Remarks
5 Conclusions and Suggested Future Research
5.1 Conclusions
5.2 Suggested Future Research
A Derivation of the Estimation of Symbol Timing Error and Fre-quency Offset
[1] MacDonald, V.H. "The Cellular Concept". The Bell Systems Technical Journal, Vol.58 (No.1): pp.15-43, Jan. 1979.
[2] K. Murota and K. Hirade. "GMSK Modulation for Digital Mobile Radio Telephony". IEEE Trans. Commun., COM-29: pp.1044-1050, July 1981.
[3] European Telecommunication Standard. "Digital Audio Broadcasting (DAB) to mobile, portable, and fixed receivers". ETS 300401, Feb. 1995.
[4] William C. Jakes, Jr., editor. "Microwave Mobile Communications". Wiley-Intercisience, New York, 1974.
[5] William C. Y. Lee, "Mobile Communications Engineering", McGraw-Hill, New York, 1982.
[6] Theodore S. Rappaport. "Wireless Communications :Principles & Practice". Prentice-Hall, Inc., New Jersey, 1996.
[7] John G. Proakis. "Digital Communications". McGraw-Hill, Inc., New York, 2nd edition, 1989.
[8] J. B. Anderson, T. Aulin and C-E Sundberg. "Digital Phase Modulation". Plenum, New York, 1986.
[9] Kamilo Feher. "Modems for Emerging Digital Cellular-Mobile Radio System". IEEE Trans. Veh. Tech., VT-40:pp.355-365, May 1991.
[10] Said M. Elnoubi. "Analysis of GMSK with Discriminator Detection in Mobile Radio Channels". IEEE Trans. Vehicular Technology, VT-35(No.2):pp.71-76, May 1986.
[11] M. K. Simon and C. C. Wang. "Differential Versus Limiter-Discriminator Detection of Narrow-Band FM". IEEE Trans. Commun., COM-31:pp.1227-1234, Nov 1983.
[12] Chia-Chi Huang, Yung-Liang Huang, and Chorng-Ren Sheu. "Synchronization Method and Apparatus for Guard Interval-Based OFDM Signals". USA patent pending, Aug. 1997.
[13] Yung-Liang Huang, Chung H. Lu, Ji-Shang Yu, and June-Dan Shih. "One Bit Differential Detector with Frequency Offset
Compensation". USA patent, No. 5,448,594, 1995.
[14] Yung-Liang Huang, Chun-Chian Lu, and Chia-Chi Huang. "Synchronization System of Digital Audio Broadcasting (DAB) Receiver". Proc. of Intl. Conf. on Consum. Electr., pp.370-371, June 1997.
[15] Yung-Liang Huang, Chun-Chian Lu, and Chia-Chi Huang. "Synchronization Method and System for a Digital Receiver". USA patent pending, June 1997.
[16] Marco Luise and Ruggero Reggiannini. "Carrier Frequency Recovery in All-Digital Modems for Burst-Mode Transmissions". IEEE Trans. on Communications, 43(No.2/3/4):pp.1169-1178, Feb./Mar./Apr.. 1995.
[17] Koji Matsuyama, et. al.. "A Burst GFSK-Modem for Wireless LAN Systems". PIMRC''95, pp.198-202, Oct. 1995.
[18] Ralf Mehlan, Yong-En Chen, and Heinrich Meyr. "A Fully Digital Feedforward MSK Demodulator with Joint Frequency Offset and Symbol Timing Estimation for Burst Mode Mobile Radio ". IEEE Trans. on Vehicular Technology, VT-42(No.4):pp.434-443, Nov. 1993.
[19] Yung-Liang Huang and Chia-Chi Huang. "A Low IF GMSK Modem Architecture with Joint Symbol Timing Recovery and Frequency Offset Compensation". PIMRC''96, pp.281-285, Oct. 1996.
[20] Chia-Chi Huang, Yung-Liang Huang, and Kong-Dar Fan. "A Demodulation Receiving System with Joint Frequency Offset and Symbol Timing Error Estimation using FFT". ROC patent, No. 073745, 1995.
[21] Chia-Chi Huang, Yung-Liang Huang, and Kong-Dar Fan. "Demodulating System for MSK and GMSK Signals Using a Fast Fourier Transform Converter". USA patent, No. 5867059, 1999.
[22] P. R. Gray and R. G. Meyer. "Future Directions in Silicon ICs for RF Personal Communications". Proceeding of IEEE 1995 Custom Integrated Circuits Conference, 1995.
[23] Louis Pandula. "Image Reject and Image Canceling Mixers". RF Design, April 1995.
[24] Gary J. Saulnier, Charles McD. Puckette, IV, Richard C. Gaus, JR., Robert J. Dunki-Jacobs, and Timothy E. Thiel. "A VLSI Demodulator for Digital RF Network Applications: Theory and Results". IEEE Journal on Selected Areas in Communications, Vol. 8(No. 8):pp.1500-1511, October 1990.
[25] Norihiko Morinaga, Masao Nakagawa, and Ryuji Kohno. "New Concepts and Technologies for Achieving Highly Reliable and High-Capacity Multimedia Wireless Communications Systems". IEEE Communications Magazine, 35(No.1):pp.34-40, Jan. 1997.
[26] Johan J. J. Haspeslagh et. al. . "A 270-kb/s 35-mW Modulator IC for GSM Cellular Radio Hand-Held Terminals". IEEE Trans. Solid-State Circuits, 25(6):pp.1450{1457, Dec. 1990.
[27] R. W. Lucky, J. Salz, and E. J. Weldon, Jr. "Principles of Data Communication". McGraw-Hill, New York, 1968.
[28] R. W. Chang. "Synthesis of Band-limited Orthogonal Signals for Multichannel Data Transmission". Bell Syst. Tech. J., vol.45:pp.1775-1796, Dec. 1966.
[29] R. W. Chang and R. A. Gibbey. "A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme". IEEE Trans. Commun. Technol., COM-16:pp.529-540, Aug. 1968.
[30] S. B. Weinstein and Paul M. Ebert. "Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform". IEEE Transactions on Communications, vol.COM-19(No.7):pp.628-634, Oct. 1971.
[31] B. Le Floch, R. Halbert-Lassalle, and D. Castelain. "Digital Sound Broadcasting to Mobile Receivers". IEEE Trans. Consum. Electr., Vol. 35(No.3):pp.457-462, August 1989.
[32] Yiyan Wu and William Y. Zou. "Performance Simulation of COFDM for TV Broadcast Application". SMPTE Journal, pp.258-265, May 1995.
[33] Hikmet Sari, Georges Karam, and Isabelle Jeanclaude. "Transmission Techniques for Digital Terrestrial TV Broadcasting". IEEE Communications Magzine, vol.2:pp.100-109, Feb. 1995.
[34] Armin Dekorsy and Karl-Dirk Kammeyer. "M-ary Orthogonal Modulation for Multi-Carrier Spread-Spectrum Uplink Transmission". IEEE International Conference on Communications, ICC''98, vol.2:pp.1004-1008, 1998.
[35] Jan-Jaap van de Beek, Magnus Sandell, Mikael Isaksson, and Per Ola Borjesson. "Low-Complex Frame Synchronization in OFDM Systems". Proc. IEEE Int. Conf. on Universal Personal Communications, pp.982-986, Oct. 1995.
[36] Ferdinand Classen and Heinrich Meyr. "Frequency Synchronization Algorithms for OFDM Systems suitable for Communication over Frequency Selective Fading Channels". Proc. ICC''94, pp.1655-1659, June 1994.
[37] H. Daffara and A. Chouly. "Maximum Likelihood Frequency Detectors for Orthogonal Multicarrier Systems". Proc. ICC''93, pp.766-771, 1993.
[38] H. Daffara and O. Adami. "A New Frequency Detector for Orthogonal Multicarrier Transmission Techniques". 45th IEEE Vehicular Technology Conference, pp.804-809, 1995.
[39] Paul H. Moose. "A Technique for Orthogonal Frequency Division Multiplexing Frequency Offset Correction". IEEE Trans. on Communications, COM-42(No.10):pp.2908-2914, Oct. 1994.
[40] W.D. Warner and C. Leung. "OFDM/FM Frame Synchronization for Mobile Radio Data Communication". IEEE Trans. on Vehicular Technology, VT-42:pp.302-313, Aug. 1993.
[41] Thierry Pollet and Miguel Peeters. "Synchronization with DMT Modulation". IEEE Communications Magazine, Vol. 37(No.4):pp.80-86, April 1999.
[42] C.P. Hung and Y. T. Su. "Joint frequency and symbol synchronization scheme for an OFDM system". to appear in Wireless Personal Communication Magazine, 1999.
[43] Kenichi Taura et. al. . "A Digital Audio Broadcasting (DAB) Receiver". IEEE Trans. Consum. Electr., Vol. 42(No.3):pp.322-326, August 1996.
[44] Chorng-Ren Sheu, Yung-Liang Huang, and Chia-Chi Huang. "Joint Symbol, Frame, and Carrier Synchronization for Eureka 147 DAB System". Proc. IEEE Int. Conf. on Universal Personal Communications, ICUPC''97, pp.693-697, Oct. 1997.
[45] Alan V. Oppenheim and Ronald W. Schafer. "Digital Signal Processing". Prentice-Hall, Englewood Cliffs, NJ, 1975.
[46] P. Shelswell. "The COFDM modulation system: the heart of digital audio broadcasting". Electronics & Communication Engineering Journal, pp.127-136, June 1995.
[47] M. Basseville and I. V. Nikiforov, editors. "Detection of Abrupt Changes: Theory and Applications". PTR Prentice Hall, New Jersey, 1993.
[48] Thierry Pollet, Mark Van Bladel, and Marc Moeneclaey. "BER Sensitivity of OFDM Systems to Carrier Frequency Offset and Wiener Phase Noise". IEEE Trans. on Communications, COM-43:pp.191-193, Feb./Mar./April 1995.
[49] Hikmet Sari, Georges Karam, and Isabelle Jeanclaude. "Frequency-Domain Equalization of Mobile Radio and Terrestrial Broadcast Channels". Globecom''94, pp.1-5, Nov. 1994.
[50] Hikmet Sari, Georges Karam, and Isabelle Jeanclaude. "Channel equalization and carrier synchronization in OFDM systems". Int. Workshop on Digital Communications, Sep. 1993.
[51] T. Walzman and M. Schwartz. "Automatic equalization using the discrete Fourier doamin". IEEE Trans. on Information Theory, vol. IT-19:pp. 59-68, Jan. 1973.
[52] J. Doherty and R. Mammone. "A row-action projection algorithm for adaptivefiltering". IEEE Int. Conference on Acoustics, Speech, and Signal Processing, pp. 20.D5.4, April 1990.
[53] J. Doherty and R. Mammone. "A new fast method for channel estimation". IEEE Int. Conference on Communications, pp. 26.1.1-26.1.5, June 1989.
[54] J. Doherty and R. Mammone. "A new method for robust fast tracking channel equalization". IEEE Military Cpmmunications Conference, pp. 13.4.1-13.4.5, Oct. 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top