跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙志偉
研究生(外文):Chih-Wei Chao
論文名稱:矩形管道內加熱晶圓之空氣混合對流實驗分析與傾斜晶圓使流場穩定之觀測
論文名稱(外文):Experimental Study of Mixed Convection Air Flow over a Heated Wafer in a Horizontal Rectangular Duct and Flow Stabilization by Wafer Tilting
指導教授:林 清 發
指導教授(外文):Tsing-Fa Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:62
中文關鍵詞:矩形管道水平化學氣相沉積反應爐混合對流迴流
外文關鍵詞:Rectangular ductHorizontal CVD reactorMixed convectionReturning flow
相關次數:
  • 被引用被引用:1
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文利用流場可視化及溫度量測方式, 對於底部鋪設圓形加熱板的水平矩形管道內空氣強制對流在空間和溫度場上所形成的複雜渦流結構和熱力學特性加以探討。以模擬水平CVD反應爐之熱浮力驅動流場。雷諾數 (Reynolds nimber) 從20到200, 雷利數 (Rayleigh number) 則由180000 到 990000, 此範圍內熱浮力所驅動的流場將分別有穩態, 週期及非週期的特性。由結果我們可看出低浮力-慣性力比時在流場中央垂直面附近會有迴流 (returning flow) 產生, 而在兩邊側板附近則看到了兩個較弱的渦流 ( vortex flow ) 結構。當浮力-慣性力比提高時, 迴流結構將朝測試段上游移動, 而兩邊的渦流結構亦將朝上游延伸, 並逐漸變的更為厚實。同時, 當浮力增加後, 有時流場會由穩定轉變為不穩定的狀態。所以我們將熱浮力所形成的流場之暫態溫度歷程整理成流場組織圖後, 我們發現在雷利數等於 810000 而雷諾數為 60 時, 流場呈次臨界過渡狀態。而在穩定流場方面, 底板傾斜的確有助於使不穩定的流場趨向穩定, 我們的傾角是從0°到4°。

Combined flow visualization and temperature measurement were carried out in the present study to investigate the complex spatial and temporal vortex flow structures and thermal characteristics in a forced air flow through a horizontal rectangular duct with a heated circular copper plate laying on the duct bottom, which intends to model the buoyancy driven flow in a horizontal chemical vapor deposition reactor. Results were obtained for the Reynolds number ranging from 20 to 200 and Rayleigh number ranging from 1.8x105 to 9.9x105 covering the steady, time periodic and nonperiodic flows. The results showed the presence of the returning flow in the entry half of the duct around the central vertical plane at x=b/2 and two weak vortex rolls near the duct sides at a low buoyancy-to-inertia ratios. At a higher buoyancy-to-inertia ratios the returning flow zone is induced in the more upstream region and near the side walls the vortex rolls are stronger. Besides, a downstream flow recirculation is induced. Moreover, at increasing buoyancy flow transition from stable to unstable states was noted. A flow regime map was given to delineate the temporal state of the flow. It is important to note the subcritical flow transition at Ra=8.1x105 and the reverse flow transition at Re=60. Moreover, the temperature oscillation in the unstable flow was strongest in the interboundary between the upstream and downstream flow recirculations near the plane x=b/2. Finally, the inclination of the heated plate was found to produce significant flow stabilization for the inclination angle varied from 0°to 4°.

ABSTRACT
CONTENTS
LIST OF TABLES
LIST OF FIGURES
NOMENCLATURE
CHAPTER 1 INTRODUCTION
CHAPTER 2 EXPERIMENTAL APPARATUS AND PROCEDURES
2.1 Experimental Apparatus
2.2 Analysis of Temperature Oscillation
2.3 Experimental Procedures
2.4 Uncertainty Analysis
CHAPTER 3 SPATIAL STRUCTURES OF VORTEX FLOW
3.1 Vortex Flow in Duct with Horizontal Heated Plate
3.2 Effects of Heated Plate Inclination on the
Vortex Flow
CHAPTER 4 TEMPORAL STRUCTURES OF VORTEX FLOW
4.1 Time-Averaged Air Temperature Distributions for
the Horizontal Heated Plate
4.2 Transient Air Temperature Variation for the
Horizontal Heated Plate
4.3 Effects of Plate Inclination on the Transient
Temperature Oscillation
CHAPTER 5 CONCLUDING REMARKS
REFERENCES

Akiyama, M., Huang, G. J., and Cheng, K. C., Experiments on the Onset of Longitudinal Vortices in Laminar Forced Convection Between Horizontal Plates, ASME Transac. C, J. Heat Transfer 93, 335-341 (1971 )
Ban, V. S., Transport Phenomena Measurements in Epitaxial Reactors, J. Electrochem. Soc.: Solid-state science and technology 125, 317-320 ( 1978 )
Cheng, K. C., and Shi, Lei, Visualization of Convective Instability Phenomena in the Entrance Region of a Horizontal Rectangular Channel Heated from Below and/or Cooled from Above, Convective Instability Phenomena, 235-248 (1994)
Chiu, K. C., and Rosenberger, F., Mixed Convection Between Horizontal Plates - I. Entrance Effects, Int. J. Heat Mass Transfer 30, 1645-1654 (1987)
Eversteyn, F. C., Severin, P. J. W., Brekel, C. H. J., v.d. and Peek, H.L., A Stagnant Layer Model for the Epitaxial Growth of Silicon from Silance in a Horizontal Reactor, J. Electrochem. Soc.: Solid-state science and technology 1174, 925-931 ( 1970 )
Fotiadis, Dimitrios I. and Jensen, Klavs F., Thermophoresis of Solid Particles in Horizontal Chemical Vapor Deposition Reactors, J. Cryst. Growth 102, 743-761(1990)
Giling, L. J., Gas Flow Patterns in Horizontal Epitaxial Reactor Cells Observed by Interference Holography, J. Electrochem. Soc.: Solid-state science and technology 129, 634 - 644 ( 1982 )
Giling, L. J., Teperatures and Flows in Horizontal Epi. Reactors, J. de Physique, c5 235 — 246 ( 1982 )
Kamotani, Y. S., Ostrach and Miao, H., Convection Heat Transfer Augmentation in Thermal Entrance Regions by Means of Thermal Instability, ASME Transac. C, J. Heat Transfer 101, 222 - 226 (1979 )
Kamotani, Y., and Ostrach, S., Effect of Thermal Instability on Thermally Developing Laminar Channel Flow, ASME Transac. C, J. Heat Transfer 98, 62-66 (1976 )
Kline, S. J., and Mcclintock, F. A., Describing Uncertainties in Single-Sample Experiments, Mechanical Engineering 75, 3-8 (1953)
Koizumi, H., and Hosokawa, I., Unsteady Behavior and Mass Transfer Performance of the Combined Convective Flow in a Horizontal Rectangular Duct Heated From Below, Int. J. Heat Mass Transfer 36, 3937-3947(1993 )
Makhviladze, T. M., and Martjushenko, A. V., Several Aspects of the Return Flows Formation in Horizontal CVD Reactors, Int. J. Heat Mass Transfer 41, 2529-2536(1998 )
Maughan, J. R., and Incropera, F. P., Experimentals on Mixed Convection Heat Transfer for Airflow in a Horizontal and Inclined Channel, Int. J. Heat Mass Transfer 30, 1307-1318(1987 )
Maughan, J. R., and Incropera, F. P., Regions of Heat Transfer Enhancement for Laminar Mixed Convection in a Parallel Plate Channel, Int. J. Heat Mass Transfer 33, 555-570(1990 )
Maughan, J. R., and Incropera, F. P., Secondary Flow in Horizontal Channels Heated from Below, Experiments in Fluids 5, 334-343(1987 )
Moffat, H., and Jensen, K. F., Complex Flow Phenomena in MOCVD Reactors, J. Cryst. Growth 77, 108-119(1986)
Moffat, R. J., Contributions to the Theory of Single-Sample Uncertainty Analysis, J. Fluid Eng., Vol. 104, 250-260(1982)
Ouazzani, J., and Rosenberger, F., Three-Dimensional Modeling of Horizontal Chemical Vapor Deposition I. MOCVD at atmosphere pressure, J. Cryst. Growh 100, 545-576 (1990)
Takahashi, R., Koga, Y. and Sugawara, K., Gas Flow Pattern and Mass Transfer Analysis in a Horizontal Flow Reactor for Chemical Vapor Deposition, J. Electrochem. Soc.: Solid-state science and technology 119, 1406-1412 ( 1972 )
Ven, J Van De, Rutten, G.M.J., Raaijmakers, M.J. and Giling, L.J., Gas Phase Depletion and Flow Dynamics in Horizontal MOCVD Reactors, J. Cryst. Growh 76, 352-372 (1986)
Visser, E. P., Kleijn, C. R., Govers, C. A. M., Hoogendoorn, C. J. and Giling, L. J., Return Flows in Horizontal MOCVD Reactors Studied with the Use of TiO2 Particle Injection and Numerical Calculations, J. Cryst. Growh 94, 929-946 (1989)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top