(54.236.62.49) 您好!臺灣時間:2021/03/06 10:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭友章
研究生(外文):Yu-Chang Hsiao
論文名稱:帶振動的離心調速器的旋轉機械非線性動力學及渾沌控制
論文名稱(外文):NONLINEAR DYNAMICS AND CONTROL OF CHAOS FOR A ROTATING MACHINE WITH A VIBRATING FLY-BALL GOVERNOR
指導教授:戈正銘戈正銘引用關係
指導教授(外文):Zheng-Ming Ge
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:72
中文關鍵詞:非線性動力學動力系統穩定性渾沌分歧
外文關鍵詞:nonlinear dynamicsdynamical systemstabilitychaosbifurcation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文探討一帶振動離心調速器之旋轉機械受到簡諧激力所產生的動態行為。由李亞普諾夫直接法可求得系統運動的穩定條件。此外藉相位圖、功率譜法、龐加萊映射法及李亞普諾夫指數可觀察到週期性及渾沌運動。並且參數變化對系統的影響可以由分歧圖即參數圖表現出來。及全局分析中,系統每個吸引子之吸引區即運動的全貌由改進式內插包映射法(modified interpolated cell mapping)求得。最後,利用外加定值的力矩、週期力矩、輸入週期脈衝、延遲迴授控制、最佳控制、bang-bang控制、適應控制及輸入一顫振訊號法則來有效地抑制渾沌行為。

The dynamic behaviors of the rotational machine with vibrating fly-ball governor that is subjected by two different forms of external disturbances are studied in the thesis. The Lyapunov direct method is applied to obtain conditions of stability of the motions of system. By applying numerical result, phase diagrams, power spectrum, Poincare maps, and Lyapunov exponents are presented to observer periodic and chaotic motions. The effect of the parameters changed in the system can be found in the bifurcation and parametric diagrams. For global analysis, the basins of attraction of each attractors of the system are located by employing the modified interpolated cell mapping (MICM) method. Finally, various methods, such as the addition of periodic torque, using periodic impulse input as control torque, the delayed feedback control, optimal control, bang-bang control, adaptive control algorithm and the injection of a dither signal method are used to control chaos effectively.

ABSTRACTi
CONTENTSii
LIST OF TABLE AND FIGURESiv
NOMENCLATURESix
Chapter 1INTRODUCTION1
Chapter 2THE ANALYTICAL ANALYSES OF THE SYSTEM4
2.1A Dynamical Model4
2.2Stability Analysis by Lyapunov Direct Method6
Chapter 3COMPUTATIONAL ANALYSES OF NONAUTONOMOUS SYSTEM12
3.1Phase Portraits and Poincare Map12
3.1Time History and Power Spectrum13
3.3Poincare Map and Bifurcation Diagram14
3.4Lyapunov Exponent and Lyapunov Dimension15
3.5Global Analysis by Modified Interpolated Cell Mapping Method17
Chapter 4CONTROLLING CHAOS20
4.1Controlling Chaos by the Addition of Constant Torque20
4.2Controlling Chaos by the Addition of Periodic Torque21
4.3Controlling Chaos by the Addition of Periodic Impulse Input22
4.4Control of Chaos by Delayed Feedback22
4.5Optimal Control of Chaos23
4.6Using Bang-Bang Control Chaos25
4.7Control of Chaos by Adaptive Control Algorithm26
4.8Controlling Chaos by Injecting Dither Signal27
Chapter 5CONCLUSIONS29
REFERENCES69

1. Moon, F. C., "Chaotic Vibrations: An Introduction for Applied for Scientists and Engineers", Wiley, Now York, 1987.
2. Khalil, H. K., "Nonlinear Systems", Prentice Hall, New Jersey, 1996.
3. Vidyasagar, M., "Nonlinear Systems Analysis", Prentice Hall, New Jersey, 1990.
4. Thompson, J. M. T., and H. B. Stewart, "Nonlinear Dynamics and Chaos", Wiley, Chichester, 1986.
5. Brockett, T. W., "On Conditions Leading to Chaos in Feedback Systems", Proc. IEEE 21st Conf. Decision and Control, 1982, pp. 932-936.
6. Holmes, P., "Bifurcation and Chaos in a Simple Feedback Control System", Proc. IEEE 22nd Conf. Decision and Control, 1983, pp. 365-370.
7. Sanders, J. A., and F. Verhulst, "Averaging Methods in Nonlinear Dynamics", Spinger-Verlag, New York, 1985.
8. Nayfeh, A. H., "Perturbation Methods", Wiley, New York, 1973.
9. Sekar, P., and S. Narayanan, "Periodic and Chaotic Motions of a Square Prism in Cross-Flow", Journal of Sound and Vibration, Vol. 170, No. 1, pp. 1-24, 1994.
10. Gottlieb, O., "Bifurcations and Routes to Chaos in Wave-Structure Interaction Systems", Journal of Guidance Control and Dynamics, Vol.15, No.4, pp. 832-839, 1992.
11. Lau, S. L., and Y. K. Cheung, "Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems", ASME Journal of Applied Mechanics, Vol. 48, pp. 959-964, 1981.
12. Cheung, Y. K., and S. H. Chen, "Application of the Incremental Harmonic Balance Method to Cubic Nonlinear Systems", Journal of Sound and Vibration, Vol. 140, No.2, pp. 273-286, 1990.
13. Friedmann, P., C. E. Hammond, and T. H. Woo, "Efficient Numerical Treatment of Periodic Systems with Application to Stability Problems", International Journal of Numerical Methods in Engineering, Vol. 11, pp. 1117-1136, 1977.
14. Ge, Z. M., and S. C. Lee, "A Modified Interpolated Cell Mapping", Journal of Sound of Vibration, Vol. 199, pp. 189-206, 1997.
15. Ge, Z. M., and F. N. Ku and H. K. Chen, "Stability and Instability of an Earth Satellite with a Cylindrical Shield in the Newtonian Central Force Field for Accuracy", JSME International Journal Series C, Vol. 40, No. 30, 1997.
16. Pyragas, K., "Continuous Control of Chaos by Self-Controlling Feedback", Physics Letters A, Vol. 170, pp. 421-428, 1992.
17. Sinha, S., R. Ramaswamy, and J. S. Rao, "Adaptive Control in Nonlinear Dynamics", Physica D Vol. 43, pp. 118-128, 1991.
18. Pontryagin, L. S., "Ordinary Differential Equations", Addison-Wesley, Reading, Massachusetts, 1962, pp. 213-220.
19. Hassard, B. D., N. D. Kazarinoff, and Y. H. Wan, "Theory and Applications of Hopf Bifurcation", Cambridge University Press, Cambridge, England, pp. 149-156, 1981.
20. Chetayev, N. G., "The Stability of Motion", Pergamon Press, Now York, 1961.
21. Wiggins, S., "Introduction to Applied Nonlinear Dynamical Systems and Chaos", Springer-Verlag, Berlin, 1990.
22. Carr, J., "Applications of Center Manifold Theory", Applied Mathematical Sciences, No. 35, Springer-Verlag, New York, 1981.
23. Poincare, H., "Les Methodes Nouvelles de la Mecanique Celeste", Gauthier-Villars, Paris, Vol. 3, 1899.
24. Ge, Z. M., and H. K. Chen, "Stability and Chaotic Motions of a Symmetric Heavy Gyroscope, Japan Journal of Applied Physics, Part 1, Vol. 35, No. 3, 1996.
25. Ge Z. M. and H. H. Chen, "Stability and Chaotic of a Rate Gyro with Feedback Control", Japan Journal of Applied Physics, Part 1, Vol. 36, No. 8, 1997.
26. Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, "Determining Lyapunov Exponents from a Time Series", Physica, 16D, pp.285-317, 1985.
27. Wright, J., "Method for Calculating a Lyapunov Exponent", Physical Review A, Vol. 29, No. 5, pp. 2924-2927, 1984.
28. Frederickson, P., J. L. Kaplan, E. D. Yorke, and J. A. Yorke, "The Liapunov Dimension of Stranger Attractors", Journal of Differential Equations, Vol. 49, pp. 185-207, 1983.
29. Tongue, B. H., "On the Global Analysis of Nonlinear System through Interpolated Cell Mapping", Physica D, Vol. 28, pp. 401-408, 1987.
30. Tongue, B. H., K. Gu, "Interpolated Cell Mapping of Dynamical Systems", ASME Journal of Applied Mechanics, Vol. 55, pp. 461-466, 1988.
31. Guckenheimer, J., and P. J. Holmes, "Nonlinear Oscillations of Dynamical Systems and Bifurcations of Vector Fields", Springer-Verlag, Berlin, 1983.
32. Chen, G., and X. Dong, "From Chaos to Order: Methodologies, Perspectives and Applications", World Scientific, New Jersey, 1998.
33. Gollub, J. P., and S. V. Benson, "Many Routes to Turbulent Convection", Journal of Fluid Mechanics, Vol. 100, pp. 449-470, 1980.
34. Ianstiti, M., Q. Hu, R. M. Westervelt, and M. Tinkham, "Noise and Chaos in a Fractal Basin Boundary Regime in a Josephson Junction", Physical Review Letter, Vol. 55, pp. 746-749, 1985.
35. Fenstermacher, P. R., H. L. Swinney, and J. P. Gollub, "Dynamical Instabilities and the Transition to Chaotic Taylor Vortex Flow", Journal of Fluid Mechanics, Vol. 94, pp. 104-128, 1979.
36. Fuh, C. C., and P. C. Tung, "Experimental and Analytical Study of Dither Signals in a Class of Chaotic Systems", Physics Letters A, Vol. 229, pp. 228-234, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [8] 吳琮璠,「台灣地區上市公司資訊科技運用實證研究」,資訊管理,中華民國資訊管理學會學報,民國82年11月,第一期,頁9~20
2. 林文康、江瑾瑜、宣立人(民76)‧糖尿病患者之知識、態度及血糖控制之相關性研究‧護理雜誌,34 (1),65-83。
3. 蕭淑貞、陳月枝、蔡世澤、林瑞祥、戴東原(民82)‧影響胰島素依賴型糖尿病人自我照顧行為之因素‧公共衛生,20 (3),247-253。
4. 張峰紫、邱啟潤、辛錫璋、蔡瑞雄(民80)‧糖尿病患者的家庭支持與其認知、態度、遵從行為及糖化血色素控制之研究‧護理雜誌,38 (3),59-69。
5. 邱啟潤、王瑞霞、李淑婷、王秀紅(民79)‧衛生所公共衛生護士及其管理個案對家庭訪視滿意度之研究‧高雄醫學科學雜誌,8 (9),477-485。
6. 王璟璇、王瑞霞、林秋菊(民87)‧門診診斷初期非胰島素依賴型糖尿病患者的自我照顧行為及其相關因素之探討‧護理雜誌,45 (2),60-74。
7. 許文耀、陳秀卿、鍾瑞玫(民86)‧醫病互動與醫囑遵循‧公共衛生,24 (1),41-48。
8. 盧美秀、林秋香(民80)‧比較團體衛教和個別衛教對糖尿病人知識態度、行為和血糖變化的影響‧護理雜誌,38 (4),101-112。
9. [9] 范錚強、Couger J.D.、宋鎧,「資訊人員的工作激勵─中美差異」,資訊管理,中華民國資訊管理學會學報,民國82年11月,第一期,頁79~88
10. 陳滋茨、張媚、林豔君(民87)‧自我效能、社會支持與糖尿病病人居家自我照顧行為相關之探討‧護理研究,6 (1),31-41。
11. 詹惠敏(民72)‧台北市某醫院糖尿病患者居家治療情形及其相關因素之探討‧台灣大學公共衛生學研究所碩士論文。
12. [18] 蔡渭水、林震岩、陳宗賢,「資訊主管角色與資訊部門績效關係之研究」,中原學報第19卷,民80,頁156~167
 
系統版面圖檔 系統版面圖檔