(34.237.124.210) 您好!臺灣時間:2021/02/25 19:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅偉賓
研究生(外文):Woeibin Luo
論文名稱:使用複合式控制針對轉子的主動軸承座之DSP實現
論文名稱(外文):DSP IMPLEMENTATION OF AN ACTIVE BEARING MOUNT FOR ROTORS USING HYBRID CONTROL
指導教授:白明憲白明憲引用關係
指導教授(外文):Mingsian Bai
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:64
中文關鍵詞:線性二次高斯法最小均方法複合式不平衡補償法自動對心法數位訊號處理器
外文關鍵詞:LQGLMSHYBRIDIMBALANCE COMPENSATIONAUTOCENTERINGDSP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本報告在討論轉子普遍存在一個相同的問題,那便是都有不平衡問題的存在,在旋轉機械上不平衡是產生振動的主要因素,轉子平衡校正,在策略上有兩種方式,一是不平衡補償法(Imbalance Compensation),另外是自動對心法(Autocentering),在本報告我們所使用的策略是前者。首先將轉子的動態模型導出,以利於分析控制。再者利用不平衡估測與動平衡的方法,得到不平衡量而加以反方向的試重完成平衡的動作。並利用不同的控制結構與方法,結構上有前饋、回饋與複合式,方法有反覆消除法(Iterative Cancellation)、最小均方法(LMS)、線性二次高斯法(LQG)。這些控制方法我們使用在轉子測試台(Rotor Kit)中,透過DSP晶片執行控制器以實現之,使用現代的控制方法來解決傳統軸承之不平衡問題,有效的消除掉因為不平衡而產生的振動問題,並實證出上面所提及控制方法對振動控制的效果及其優缺點比較,並以效果最好的複合控制法運用轉子的不平衡振動控制,希望能在精密加工的主軸振動控制有所貢獻。

The fact that mass unbalances of a rotor cannot be completely avoided. The unbalance in the rotors of rotating machinery causes undesirable vibrations. There are two vibration control strategies, one is imbalance compensation and the other is autocentering. Our strategy in the research is the former. In order to analyze and control unbalances of rotor, we firstly show the modeling of rotor motion. Then applying the dynamic balance and influence coefficient procedure to find the correction mass. Added to the rotor to cancel unbalances. Three control algorithms and three control structures are used. The least-mean-square (LMS) with synthetic reference, the linear quadratic gaussian (LQG) control and iterative cancellation are employed for controller synthesis. Feedback, feedforward and hybrid configurations are used as the major structures. The controllers are implemented by using a digital signal processor (DSP) in the rotor kit. Using modern control methods to compensate rotor imbalance in conventional ball bearing. And these proposed methods are effective in attenuating vibrations. These control methods are compared. The experimental results indicate that hybrid structure yields the best performance in terms of attenuation and convergence speed. We wish that the hybrid active vibration control can be used in the principal axis of precision machining.

中文摘要i
英文摘要ii
致 謝iii
目 錄iv
表 目 錄vi
圖 目 錄vii
第一章、緒論1
1.1 動機1
1.2文獻探討2
1.3 研究貢獻及架構簡述4
第二章、轉子動態模式與頻率域之系統判別5
2.1 Jeffcott單平面動態模式5
2.2雙平面(Two-plane)動態模式6
2.3頻率域之系統判別10
第三章、不平衡估測與動平衡13
3.1動平衡13
3.2影響係數法16
第四章、轉子控制21
4.1控制策略與結構21
4.2反覆式消除法(Iterative Cancellation)22
4.3前饋式最小均方法(LMS)24
4.4回饋式線性二次高斯法(LQG)26
4.5複合式(Hybrid)控制法28
第五章、數值模擬與實驗29
5.1模擬結果29
5.2實驗結果與討論31
第六章、結論與未來工作35
6.1結論35
6.2未來工作36
參考文獻37
表目錄
表一 轉子動平衡實驗結果40
表二 轉子影響係數法實驗結果40
表三 數值模擬結果比較41
表四 實驗結果比較41
圖目錄
圖2.1 簡單的Jeffcott轉子模型42
圖2.2 轉子受到陀螺儀效應後轉動非在一平面42
圖2.3 固定座標(X,Y,Z)與轉動座標(x,y,z)間的關係43
圖2.4 不平衡量在轉動座標上的位置43
圖2.5 (a)轉子模型,(b)節點1,2經過小角度 轉動後的位置變動44
圖3.1 不平衡量的表示方法45
圖3.2 單面平衡頻率響應函數法45
圖4.1 (a)不平衡補償法,(b)自動對心法的差異46
圖4.2 慣性中心與幾何中心未重合造成不平衡的向心力46
圖4.3 多頻道的主動振動控制問題47
圖4.4 LMS前饋控制架構48
圖4.5 LQG回饋控制架構48
圖4.6 複合式控制架構49
圖5.1 數值模擬:LMS前饋控制 (a)控制後的x方向的誤差訊號,(b)控制前後的x方向的Power Spectrum50
圖5.2 數值模擬:LMS前饋控制 (a)控制後的y方向的誤差訊號,(b)控制前後的y方向的Power Spectrum51
圖5.3 數值模擬:LQG前饋控制 (a)控制後的x方向的誤差訊號,(b)控制前後的x方向的Power Spectrum52
圖5.4 數值模擬:LQG前饋控制 (a)控制後的y方向的誤差訊號,(b)控制前後的y方向的Power Spectrum53
圖5.5 數值模擬:複合式控制 (a)控制後的x方向的誤差訊號,(b)控制前後的x方向的Power Spectrum54
圖5.6 數值模擬:複合式控制 (a)控制後的y方向的誤差訊號,(b)控制前後的y方向的Power Spectrum55
圖5.7 轉子測試台(Rotor Kit)實驗設備架構圖56
圖5.8 電磁式致動器的支撐架57
圖5.9 電磁式致動器的設計概略圖58
圖5.10 實體架構圖59
圖5.11 致動器到感測器間的模式60
圖5.12 實驗結果:Iterative Cancellation控制 (a)控制前後x方向的Power Spectrum,(b)控制前後y方向的Power Spectrum61
圖5.13 實驗結果:LMS前饋控制 (a)控制前後x方向的Power Spectrum,(b)控制前後y方向的Power Spectrum62
圖5.14 實驗結果:LQG回饋控制 (a)控制前後x方向的Power Spectrum,(b)控制前後y方向的Power Spectrum63
圖5.15 實驗結果:複合式控制 (a)控制前後x方向的Power Spectrum,(b)控制前後y方向的Power Spectrum64

Ahrens, M., Kucera, L., and Larsonneur, R., 1996, “Performance of a Magnetically Suspended Flywheel Energy Storage Device,” IEEE Trans. Contr. Syst. Tech., Vol. 4, pp. 494-501.
Bai, M. R., and Wu T., 1998, “Simulations of an Internal Model-Based Active Noise Control System for Suppressing Periodic” ASME, J. Vib. Acoust., Vol. 120, pp. 111-116.
Bleuler, H., , C., Herzog, R., Larsonneur, R., Mizuno, T., Siegwart, R., and Woo, S.-J., 1994, “Application of Digital Signal Processors for Industrial Magnetic Bearings,” IEEE Trans. Contr. Syst. Tech., Vol. 2, pp. 280-289.
, P., and , C., “Autobalancing of Rotors,” J. Sound Vib., Vol. 111, pp. 429-440.
Burrows, C. R., and Sahinkaya, M. N., 1983, “Vibration control of multimode rotor bearing systems,” in Proc. R. Soc. Lond. A386, pp. 77-94.
Chen, C. T., 1984, Linear System Theory and Design, Holt, Rinehart and Winston, New York.
Clark, R. L. and Bernstein, D. S., 1998, “Hybrid Control : Separation in Disign”, J. Sound Vib., pp.784-791.
Darlow, M. S., 1989, Balancing of High-Speed Machinery, Springer-Verlag, New York.
Ehrich, F. F., ed., 1992, Handbook of Rotordynamics, McGraw-Hill.
Herzog, R., Buhler, P., , C., and Larsonneur, R., 1996, “Unbalance Compensation Using Generalized Notch Filter in the Multivariable Feedback of Magnetic Bearing,” IEEE Trans. Contr. Syst. Tech., Vol. 4, pp. 580-586.
Isermann, R., 1993, “Fault Diagnosis of Machines via Parameter Estimation and Knowledge Processing-Tutorial Paper,” Automatica, 29, pp. 815-835.
Juang, J., 1994, Applied System Identification, Prentice Hall, Englewood Cliffs, NJ.
Knospe, C. R., Fedigan, S. J., Hope, R. W., and Williams, R. D., 1997, “A Multitasking DSPImplemintation of Adaptive Magnetic Bearing Control” IEEE Trans. Contr. Syst. Tech., Vol. 5, pp. 230-237,.
, E., 1993, Dynamics of Rotors and Foundations, Springer-Verlag Berlin Heidelberg.
Kuo, S. M., and Morgan, D. R., 1996, Active Noise Control Systems, John Wiley and Sons, New York.
Lalanne, M., Ferraris G., 1990, Rotordynamics Prediction in Engineering, John Wiley and Sons, New York.
Lee, J., and Van Moorhem, W. K., 1996, “Analytical and Experimental Analysis of a Self-Compensating Dynamic Balancer in a Rotating Mechanism,” Transactions of the ASME, Vol. 118, pp. 468-472.
Lewis, F. L., 1992, Applied Optimal Control and Estimation, Prentice Hall, New York.
Lewis, F. L. and Syrmos, V. L., 1995, Optimal Control, John Wiley and Sons, New York.
Long, G., Ling, F., and Proakis, J. G., 1992, “Corrections to ‘The LMS algorithm with delayed coefficient adaptation’,” IEEE Trans. Signal Processing, Vol.40, pp. 230-232.
Lum, K.-Y., Coppola, V. T., and Bernstein, D. S., 1996, “Adaptive Autobalancing Control for an Active Magnetic Bearing Supporting a Rotor with Unknown Mass Imbalance” IEEE Trans. Contr. Syst. Tech., Vol. 4, pp. 587-597.
Lum, K.-Y., Coppola, V. T., and Bernstein, D. S., 1998, “Adaptive Virtual Autobalancing for a Rigid Rotor with Unknown Mass Imbalance Supported by Magnetic Bearing,” ASME, J. Vib. Acoust., Vol. 120, pp. 557-570.
Lund, J. W., and Tonneson, J., 1972, “Analysis and Experiments in Multiplane Balancing of Flexible Rotors,” Transactions of the American Society of Mechanical Engineers, Journal of Engineering for Industry, Vol. 94, pp.233.
Matsumura, F., and Yoshimoto, T., 1986, “System Modeling and Control Design of a Horizontal Shaft Magnetic Bearing System,” IEEE Trans. Magnetics, Vol. MAG-22, pp. 196-203,.
Mohamed, A, M., and Busch-Vishniac, I., 1995, “Imbalance Compensation and Automatic Balancing in Magnetic Bearing System Using the q-parametrization,” IEEE Trans. Contr. Syst. Tech., Vol. 3, pp. 202-211.
Nonami, K., and Ito, T., 1996, “ Synthesis of Flexible Rotor-Magnetic Bearing System,” IEEE Trans. Contr. Syst. Tech., Vol. 4, pp. 503-512.
Palazzolo, A. B., Lin, R. R., Kascak, A. F., Montague, J., and Alexander, R. M., 1991, “Test and Theory for Piezoelectric Actuator-Active Vibration Control of Rotating Machinery,” ASME, J. Vib. Acoust., Vol. 113, pp. 167-175.
Palazzolo, A. B., Lin, R. R., Kascak, A. F., and Alexander, R. M., 1988, ”Active Control of Transient Rotordynamic Vibration by Optimal Control Methods,” Transactions of the ASME, Vol. 111, pp. 264-270.
Palazzolo, A. B., Jagannathan, S., Kascak, A. F., Montague, G. T., and Kiraly, L. J., 1993, “Hybrid Active Vibration Control of Rotorbearing Systems Using Piezoelectric Actuators,” ASME, J. Vib. Acoust., Vol. 115, pp. 111-119.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔