|
[1] Aihara, K., Okada, M., Okayama, A., Matsumoto, T. and Matsuda, S., Fabrication of an Oxide Superconducting Wire by a Drawing-rolling Method, Journal of the JSPM, Vol. 35, No. 5, pp. 325-328, 1988. [2] Sato, K. Mukai, H., Hikata, T., Ueyama, M. and Nagata, M., Silver-sheathed Bi-based Superconducting Wires, Journal of the JSPM, Vol. 37, No. 5, pp. 677-679, 1990. [3] Nishikawa, Y., Hiraoka, M., Yamamato, K. and Shintani, T., High-Tc Bi-Pb-Sr-Ca-Cu-O Superconductor Prepared by Plasticized Extrusion, Journal of the JSPM, Vol. 37, No.5, pp. 89-92, 1990. [4] Seido, M., and Ishigami, Y., “Superconductor Wire-making Technology,” Journal of the JSTP, Vol. 32, No. 370, pp. 1327-1333, 1991. [5] Tanaka, Y., “High-Tc Superconducting Wire-Making,” Journal of the JSTP, Vol. 29, No. 326, pp. 191-197, 1988. [6] Kaieda, Y., Wada, H., Itoh, K., Kuroda, T., and Odawara, O., “Effect of Cold Isostatic Pressing on Superconductivity of Y-Ba-Cu-O System,” Journal of the JSPM, Vol. 36, No. 5, pp. 611-614, 1988. [7] Nishida, T., Shiono, T., Ohtsuka, T., and Nishikawa, T., “Hot-extrusion Processing of Bi-Sr-Ca-Cu-O Super Conducting Oxide Ceramics (2212 Phase),” Journal of the JSPM, Vol. 36, No. 5, pp. 468-473, 1989. [8] Avitzur, B., “The Production of Bi-metal Wire,” The Wire Journal, Vol. 3, pp. 42-49, 1970. [9] Zoerner, W., Austen, A., and Avitzur, B., “Hydrostatic Extrusion of Hard Core Clad Rod,” Trans. ASME, J. Basic Eng., pp. 78-80, 1972. [10] Osakada, K., Limb, M., and Mellor, P. B. “Hydrostatic Extrusion of Composite Rods with Hard Cores,” Int. J. of Mech. Sci., Vol. 15, pp. 291-307, 1973. [11] Story, J. M., Avitzur, B., and Hahn, Jr. W. C., “The Effect of Receiver Pressure on the Observed Flow Pattern in the Hydrostatic Extrusion of Bimetal Rods,” Trans. ASME J. of Eng. for Industry, Vol. 98, pp. 909-913, 1976. [12] Avitzur, B., Wu, R., Talbert, S., and Chou, Y. T., “Criterion for the Prevention of Core Fracture During Extrusion of Bimetal Rods,” Trans. ASME J. of Eng. for Industry, Vol. 104, pp. 293-303, 1982. [13] Avitzur, B., Wu, R., Talbert, S., and Chou, Y. T., “An Analytical Approach to the Problem of Core Fracture during Extrusion of Bimetal Rods,” Trans. ASME J. of Eng. for Industry, Vol. 107, pp. 247-253, 1985. [14] Song, D. M., “Finite Element Analysis on Extrusion of Composite Clad Rods,” National Chiao Tung University, Master Thesis, R. O. C., 1993. [15] Tokuno, H., and Ikeda, K., “Analysis of Deformation in Extrusion of Composite Rods,” J. of Materials Processing Tech., Vol. 26, pp. 323-327, 1991. [16] Park, H. J., Na, K. H., Cho, H. S., Lee, Y. S., and Kim, S. W., “A Study of the Hydrostatic Extrusion of Copper-clad Aluminium Tube,” J. of Materials Processing Tech., Vol. 67, pp. 24-28, 1997. [17] Lin, S. F., “Optimum Process Design in Composite Clad Rods Extrusion by Finite Element Method,” National Chiao Tung University, Master Thesis, R. O. C., 1994. [18] Byon, S. M., and Hwang, S. M., “Die Shape Optimal Design in Bimetal Extrusion by the Finite Element Method,” Trans. ASME J. of Manufact. Sci. and Eng., Vol. 119, pp.143-150, 1997. [19] Oliver, W. C., and Nix, W. D., “Effects of Strain Hardening in Hydrostatic Extrusion of Axisymmetric Bi-metal Rods,” Metal Technology, Vol. 8, p. 75, 1981. [20] Wang, H. S., “The Study of Powder/Solid Composite Clad Rod of Extrusion Processes,” National Chiao Tung University, Master Thesis, R. O. C., 1994. [21] Hsieh, W. C., “The Study on Extrusion Processes of Powder/Solid Composite Clad Rod,” National Chiao Tung University, Master Thesis, R. O. C., 1995. [22] Chou, C. T., “The Flowability of Powder in the Process of Extrusion,” National Chiao Tung University, Master Thesis, R. O. C., 1996. [23] Ke, T. H., “The Study on Extrusion of Ceramic Powder/Solid Composite Clad Rods,” National Chiao Tung University, Master Thesis, R. O. C., 1997. [24] Yan, R. J., “Extrusion Process of Superconductive Powder/Solid Composite Clad Rod,” National Chiao Tung University, Master Thesis, R. O. C., 1997. [25] Hung, J. C., “The Design and Manufacture of a Hydrostatic Extrusion Device,” National Chiao Tung University, Master Thesis, R. O. C., 1997. [26] Chang, J., “The Research of Hydrostatic Extrusion on High-Tc Superconducting Powder/Metallic Solid Composite Clad Rods,” National Chiao Tung University, Master Thesis, R. O. C., 1998. [27] Kobayashi, S., Oh, S. I., and Altan, T., Metal Forming and the Finite-Element Method, Oxford University Press, 1989. [28] Lubliner, J., Plasticity Theory, Macmillan Publishing Company, 1990. [29] Green, R. J., “A Plasticity Theory for Porous Solids,” Int. J. Mech. Sci., Vol. 14, pp. 215-224. 1972. [30] Gurson, A. L., “Plastic flow and fracture behavior of ductile materials incorporating nucleation, growth, and interaction,” Brown University, Ph. D. Thesis, Providence, Rhode Island, U.S.A., 1975 [31] Doraivelu, S. M., Gegel, H. L., Gunasekera, J. S., Malas, J. C., Morgan, J. T., and Thomas, J. F., “A New Yield Function for Compressible P/M Materials,” Int. J. Mech. Sci. Vol. 26, pp. 527-535,1984. [32] Hwang, B. B., and Kobayashi, S., “Deformation Characterization of Powdered Metals in Compaction,” Int. J. Mech. Tools Manufact., Vol. 30, No. 2, pp. 309-323, 1990. [33] Hwang, B. B., and Kobayashi, S., “Application of the Finite Element Method to Powdered Metal Compaction Processes,” Int. J. Mech. Tools Manufact., Vol. 31, No. 1, pp. 123-137, 1991. [34] Mohr, O., “Uber die Darstellung des Spannungszustandes und des Deforma-tionszustandes eines Korperelements,” Civilingenieur, Vol. 28, pp. 113-156, 1882. [35] Drucker, D. C., and Prager, W., ”Soil Mechanics and Plastic Analysis of Limit Design,” Q. Appl. Math., Vol. 10, pp. 157-165, 1952. [36] Drucker, D. C., Gibson, R. E., and Henkel, D. J., “Soil Mechanics and Work-Hardening Theories of Plasticity,” Trans., ASCE, Vol. 122, pp. 338-346, 1957. [37] Resende, L., and Martin, J., B., “Formulation of Drucker-Prager Cap Model,” M. ASCE, Vol.111, No. 7, pp. 855-881, 1985. [38] Bortzmeyer, D., “Modelling Ceramic Powder Compaction,” Powder Tech., Vol. 70, pp. 131-139, 1992. [39] Watson, T. J., and Wert, J. A., “On the Development of Constitutive Relations for Metallic Powders,” Metallurgical Trans. A, Vol. 24A, pp. 2071-2081, 1993. [40] Annual Books of ASTM Standards: Soil and Rock, ASTM, Philadelphia, 1993. [41] Kamath, S., Puri, H. B., Manbeck, and Hogg, R., “Flow Properties of Powder Using Four Testers — Measurement, Comparison and Assessment,” Powder Technology, Vol. 76, pp. 277-289, 1993. [42] Bouvard, D., Lanier, J., and Stutz, P., “Mechanical Behaviour of Graphite Powder,” Powder Technology, Vol. 54, pp. 175-181, 1988. [43] Majors, H. J. R., “Studies in Cold-drawing, Part 3: Determination of Coefficient of Friction,” Tans. ASME, Vol. 78, pp. 79-85, 1955. [44] Robertson, J., “Method and Apparatus for Forming Metal Articles,” British Patent No. 19,356,14 October, 1893; US Patent No. 524,50414 August, 1894. [45] Brigdmen, P. W., Studies in Large Plastic Flow and Fracture, McGraw-Hill Publishing Co., London and New York, 1952 [46] Nixon, S. A., Chanlder, H. W., “On the Elasticity and Plasticity of Dilatant Granular Materials,” J. Mech. and Phys. Solids., Vol. 47, pp. 1397-1408, 1999 [47] Lade, P. V., Yamamuro, J. A., Bopp, P. A., “Influence of Time Effects on Instability of Granular Materials,” Computers and Geotechnics, Vol. 20, pp. 179-193, 1997 [48] Pugh, H. L. D., Low, A. H., “The Hydrostatic Extrusion of Difficult Metals,” Journal of the Institute of Metals,
|