跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 19:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周益男
研究生(外文):I-Nan Chou
論文名稱:粉體/固體複合包芯材擠製之研究
論文名稱(外文):The Study on Extrusion of Powder/Solid Composite Clad Rods
指導教授:洪景華
指導教授(外文):Chinghua Hung
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:109
中文關鍵詞:粉體複合包芯材擠製降伏準則有限元素法
外文關鍵詞:powdercomposite clad rodsextrusionyield criterionfinite element method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文之目的在於對粉體╱固體複合包芯材的擠製製程進行分析研究。論文中的研究集中在三個主題,包括粉體的變形特性、直接複合擠製和靜水壓複合擠製。釔鋇銅超導粉末的變形特性是以修正的Drucker-Prager/Cap 降伏準則來描述,而降伏準則裡的材料參數則是由直接剪力試驗和拘束壓縮試驗所求得,並且引用到粉體/固體複合包芯材的有限元素分析模型中的材料特性中。經由有限元素軟體ABAQUS所模擬出的預測值與實驗有相當的一致性;同時透過系統化的分析,針對每個加工參數對粉體的緻密狀況、芯材半徑的穩定度和最大擠製負載的效應都進行了相當程度的研究和探討。在靜水壓擠製的有限元素模型中,我們導入了流體元素來施加包覆擠製胚料的高壓流體邊界條件。由此模型所得到結果與實驗值也相當地一致。
The purpose of this dissertation is to investigate the extrusion process of powder/solid composite clad rod. The studies focus on three subjects; the deformation characterization of powder, direct composite extrusion, and hydrostatic composite extrusion. The deformation characterization of YBCO superconducting powder was modeled by modified Drucker-Prager/Cap yield criterion in which material parameters were obtained by direct shear tests and constrained compression tests. The material parameters were then included into the material properties for the finite element model of powder/solid composite clad rod. The predicted results from simulations by using finite element software ABAQUS displayed a good agreement with direct extrusion experiments. Through systematic analyses, the effects on consolidation condition, stability of the powdered core radius and the maximum extrusion load of each chosen forming parameter were investigated and discussed respectively. Fluid elements introduced into the finite element model of hydrostatic extrusion process were used to apply the boundary condition of high-pressure fluid surrounding the billet. The results from this finite element model also show a good agreement with hydrostatic experimental data.
COVER
ABSTRACT (Chinese)
ABSTRACT (Englidh)
ACKMPWLEDGMENTS
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
NOMENCLATURE
CHAPTER 1 INTRODUCTION
1.1 Powder/Solid Composite Clad Rods
1.2 Superconductor Wire-Making Technology
1.3 Literature Reviews
1.4 Scope of the Present Study
CHAPTER 2 THE YIELD CRITERION OF POWDER
2.1 The Yield Criteria
2.2 Yield Criteria for Powdered Matcrials
2.3 Modified Drucker-Prager/Cap Yield Criterion
2.4 The Yield Loci Construction
CHAPTER 3 EXPERIMENTS ON MATERIAL PARAMETRS OF YIELD CRITERION
3.1 Introduction
3.2 Direct Shear Tests
3.3 Constrained Compression Tests
3.4 Results and Discussions
CHAPTER 4 DIRECT EXTRUSION OF POWDER/SOLID COMPOSITE CLAD RODS: EXPERIMENTS
4.1 Introduction
4.2 Experiments on Material Properties
4.3 Ring Compression Tests
4.4 Experiments on Composite Extrusion
4.5 Results and Discussions
4.6 Concluding Remarks
CHAPTER 5 DIRECT EXTRUSION OF POWDER/SOLID COMPOSITE CLAD RODS: THE FINITE ELEMENT ANALYSIS
5.1 Introduction
5.2 The Finite Element Model
5.3 Results and Comparisons
5.4 Discussion
5.5 Concluding Remarks
CHAPTER 6 THE FINITE ELEMENT ANALYSIS ON HYDROSTATIC EXPRUSION OF POWDER/SOLID COMPOSITE CLAD RODS
6.1 Introduction
6.2 Hydrostatic Extrusion Apparatus and Experiments
6.3 The Finite Element Model
6.4 Results and Dicussions
6.5 Concluding Remarks
CHAPTER 7 SUMMARY AND CONSLUSIONS
REFERENCES
PUBLICATION LIST
VITA
[1] Aihara, K., Okada, M., Okayama, A., Matsumoto, T. and Matsuda, S., Fabrication of an Oxide Superconducting Wire by a Drawing-rolling Method, Journal of the JSPM, Vol. 35, No. 5, pp. 325-328, 1988.
[2] Sato, K. Mukai, H., Hikata, T., Ueyama, M. and Nagata, M., Silver-sheathed Bi-based Superconducting Wires, Journal of the JSPM, Vol. 37, No. 5, pp. 677-679, 1990.
[3] Nishikawa, Y., Hiraoka, M., Yamamato, K. and Shintani, T., High-Tc Bi-Pb-Sr-Ca-Cu-O Superconductor Prepared by Plasticized Extrusion, Journal of the JSPM, Vol. 37, No.5, pp. 89-92, 1990.
[4] Seido, M., and Ishigami, Y., “Superconductor Wire-making Technology,” Journal of the JSTP, Vol. 32, No. 370, pp. 1327-1333, 1991.
[5] Tanaka, Y., “High-Tc Superconducting Wire-Making,” Journal of the JSTP, Vol. 29, No. 326, pp. 191-197, 1988.
[6] Kaieda, Y., Wada, H., Itoh, K., Kuroda, T., and Odawara, O., “Effect of Cold Isostatic Pressing on Superconductivity of Y-Ba-Cu-O System,” Journal of the JSPM, Vol. 36, No. 5, pp. 611-614, 1988.
[7] Nishida, T., Shiono, T., Ohtsuka, T., and Nishikawa, T., “Hot-extrusion Processing of Bi-Sr-Ca-Cu-O Super Conducting Oxide Ceramics (2212 Phase),” Journal of the JSPM, Vol. 36, No. 5, pp. 468-473, 1989.
[8] Avitzur, B., “The Production of Bi-metal Wire,” The Wire Journal, Vol. 3, pp. 42-49, 1970.
[9] Zoerner, W., Austen, A., and Avitzur, B., “Hydrostatic Extrusion of Hard Core Clad Rod,” Trans. ASME, J. Basic Eng., pp. 78-80, 1972.
[10] Osakada, K., Limb, M., and Mellor, P. B. “Hydrostatic Extrusion of Composite Rods with Hard Cores,” Int. J. of Mech. Sci., Vol. 15, pp. 291-307, 1973.
[11] Story, J. M., Avitzur, B., and Hahn, Jr. W. C., “The Effect of Receiver Pressure on the Observed Flow Pattern in the Hydrostatic Extrusion of Bimetal Rods,” Trans. ASME J. of Eng. for Industry, Vol. 98, pp. 909-913, 1976.
[12] Avitzur, B., Wu, R., Talbert, S., and Chou, Y. T., “Criterion for the Prevention of Core Fracture During Extrusion of Bimetal Rods,” Trans. ASME J. of Eng. for Industry, Vol. 104, pp. 293-303, 1982.
[13] Avitzur, B., Wu, R., Talbert, S., and Chou, Y. T., “An Analytical Approach to the Problem of Core Fracture during Extrusion of Bimetal Rods,” Trans. ASME J. of Eng. for Industry, Vol. 107, pp. 247-253, 1985.
[14] Song, D. M., “Finite Element Analysis on Extrusion of Composite Clad Rods,” National Chiao Tung University, Master Thesis, R. O. C., 1993.
[15] Tokuno, H., and Ikeda, K., “Analysis of Deformation in Extrusion of Composite Rods,” J. of Materials Processing Tech., Vol. 26, pp. 323-327, 1991.
[16] Park, H. J., Na, K. H., Cho, H. S., Lee, Y. S., and Kim, S. W., “A Study of the Hydrostatic Extrusion of Copper-clad Aluminium Tube,” J. of Materials Processing Tech., Vol. 67, pp. 24-28, 1997.
[17] Lin, S. F., “Optimum Process Design in Composite Clad Rods Extrusion by Finite Element Method,” National Chiao Tung University, Master Thesis, R. O. C., 1994.
[18] Byon, S. M., and Hwang, S. M., “Die Shape Optimal Design in Bimetal Extrusion by the Finite Element Method,” Trans. ASME J. of Manufact. Sci. and Eng., Vol. 119, pp.143-150, 1997.
[19] Oliver, W. C., and Nix, W. D., “Effects of Strain Hardening in Hydrostatic Extrusion of Axisymmetric Bi-metal Rods,” Metal Technology, Vol. 8, p. 75, 1981.
[20] Wang, H. S., “The Study of Powder/Solid Composite Clad Rod of Extrusion Processes,” National Chiao Tung University, Master Thesis, R. O. C., 1994.
[21] Hsieh, W. C., “The Study on Extrusion Processes of Powder/Solid Composite Clad Rod,” National Chiao Tung University, Master Thesis, R. O. C., 1995.
[22] Chou, C. T., “The Flowability of Powder in the Process of Extrusion,” National Chiao Tung University, Master Thesis, R. O. C., 1996.
[23] Ke, T. H., “The Study on Extrusion of Ceramic Powder/Solid Composite Clad Rods,” National Chiao Tung University, Master Thesis, R. O. C., 1997.
[24] Yan, R. J., “Extrusion Process of Superconductive Powder/Solid Composite Clad Rod,” National Chiao Tung University, Master Thesis, R. O. C., 1997.
[25] Hung, J. C., “The Design and Manufacture of a Hydrostatic Extrusion Device,” National Chiao Tung University, Master Thesis, R. O. C., 1997.
[26] Chang, J., “The Research of Hydrostatic Extrusion on High-Tc Superconducting Powder/Metallic Solid Composite Clad Rods,” National Chiao Tung University, Master Thesis, R. O. C., 1998.
[27] Kobayashi, S., Oh, S. I., and Altan, T., Metal Forming and the Finite-Element Method, Oxford University Press, 1989.
[28] Lubliner, J., Plasticity Theory, Macmillan Publishing Company, 1990.
[29] Green, R. J., “A Plasticity Theory for Porous Solids,” Int. J. Mech. Sci., Vol. 14, pp. 215-224. 1972.
[30] Gurson, A. L., “Plastic flow and fracture behavior of ductile materials incorporating nucleation, growth, and interaction,” Brown University, Ph. D. Thesis, Providence, Rhode Island, U.S.A., 1975
[31] Doraivelu, S. M., Gegel, H. L., Gunasekera, J. S., Malas, J. C., Morgan, J. T., and Thomas, J. F., “A New Yield Function for Compressible P/M Materials,” Int. J. Mech. Sci. Vol. 26, pp. 527-535,1984.
[32] Hwang, B. B., and Kobayashi, S., “Deformation Characterization of Powdered Metals in Compaction,” Int. J. Mech. Tools Manufact., Vol. 30, No. 2, pp. 309-323, 1990.
[33] Hwang, B. B., and Kobayashi, S., “Application of the Finite Element Method to Powdered Metal Compaction Processes,” Int. J. Mech. Tools Manufact., Vol. 31, No. 1, pp. 123-137, 1991.
[34] Mohr, O., “Uber die Darstellung des Spannungszustandes und des Deforma-tionszustandes eines Korperelements,” Civilingenieur, Vol. 28, pp. 113-156, 1882.
[35] Drucker, D. C., and Prager, W., ”Soil Mechanics and Plastic Analysis of Limit Design,” Q. Appl. Math., Vol. 10, pp. 157-165, 1952.
[36] Drucker, D. C., Gibson, R. E., and Henkel, D. J., “Soil Mechanics and Work-Hardening Theories of Plasticity,” Trans., ASCE, Vol. 122, pp. 338-346, 1957.
[37] Resende, L., and Martin, J., B., “Formulation of Drucker-Prager Cap Model,” M. ASCE, Vol.111, No. 7, pp. 855-881, 1985.
[38] Bortzmeyer, D., “Modelling Ceramic Powder Compaction,” Powder Tech., Vol. 70, pp. 131-139, 1992.
[39] Watson, T. J., and Wert, J. A., “On the Development of Constitutive Relations for Metallic Powders,” Metallurgical Trans. A, Vol. 24A, pp. 2071-2081, 1993.
[40] Annual Books of ASTM Standards: Soil and Rock, ASTM, Philadelphia, 1993.
[41] Kamath, S., Puri, H. B., Manbeck, and Hogg, R., “Flow Properties of Powder Using Four Testers — Measurement, Comparison and Assessment,” Powder Technology, Vol. 76, pp. 277-289, 1993.
[42] Bouvard, D., Lanier, J., and Stutz, P., “Mechanical Behaviour of Graphite Powder,” Powder Technology, Vol. 54, pp. 175-181, 1988.
[43] Majors, H. J. R., “Studies in Cold-drawing, Part 3: Determination of Coefficient of Friction,” Tans. ASME, Vol. 78, pp. 79-85, 1955.
[44] Robertson, J., “Method and Apparatus for Forming Metal Articles,” British Patent No. 19,356,14 October, 1893; US Patent No. 524,50414 August, 1894.
[45] Brigdmen, P. W., Studies in Large Plastic Flow and Fracture, McGraw-Hill Publishing Co., London and New York, 1952
[46] Nixon, S. A., Chanlder, H. W., “On the Elasticity and Plasticity of Dilatant Granular Materials,” J. Mech. and Phys. Solids., Vol. 47, pp. 1397-1408, 1999
[47] Lade, P. V., Yamamuro, J. A., Bopp, P. A., “Influence of Time Effects on Instability of Granular Materials,” Computers and Geotechnics, Vol. 20, pp. 179-193, 1997
[48] Pugh, H. L. D., Low, A. H., “The Hydrostatic Extrusion of Difficult Metals,” Journal of the Institute of Metals,
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top