(3.235.108.188) 您好!臺灣時間:2021/02/26 18:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施甫岳
研究生(外文):Fu-Yueh Shih
論文名稱:磁鉛礦型鹼土鋁鎵酸鹽螢光體之合成與特性鑑定
論文名稱(外文):The Synthesis and Characterization of Magnetoplumbite-type Sr(Ga1-xAlx)12O19:R ( R = Eu3+ , Tb3+ , Cr3+ , Mn2+ ) Phosphors
指導教授:陳登銘陳登銘引用關係
指導教授(外文):Teng-Ming Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:119
中文關鍵詞:螢光體鹼土鋁鎵酸鹽
外文關鍵詞:MagnetoplumbitePhosphorSr(Ga1-xAlx)12O19:REu3+Tb3+Cr3+Mn2+
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討具有磁鉛礦結構而化學式為AB12O19 (A , B分別為+2 , +3價陽離子) 的主體分別摻雜稀土與過渡金屬陽離子之Sr(Ga1-xAlx)12O19:R系列螢光體主體組成、活化劑離子濃度、晶體結構與溫度等因素對上述螢光體發光性質的效應。
Sr(Ga1-xAlx)12O19:R ( 0 ≦x≦1.0 ; R= Eu3+ , Tb3+ , Cr3+ , Mn2+)系列螢光體係利用固態燒結法於1,400℃空氣中(R為Mn2+之樣品須再於1,000℃以氫/氬氣還原)方能製得。
X光繞射圖譜分析顯示:Sr(Ga1-xAlx)12O19:R主體晶格尺寸隨Al3+取代量增加而縮減,此亦導致主體能隙隨之遞增 。 陰極射線發光光譜顯示SrGa12O19呈現主體自身活化且放射波長為429 nm之發射峰 ; 而SrAl12O19則否。
此外,紫外光致發光光譜研究顯示: 隨 主 體 晶 格 尺 寸 縮 小, Sr(Ga1-xAlx)12O19: Cr3+系列螢光體2E →4A2放射峰波長產生藍位移,而Sr(Ga1-xAlx)12O19: Mn2+系列螢光體4T1→6A1放射峰波長則產生紅位移。反之,Sr(Ga1-xAlx)12O19: Eu3+或Tb3+系列螢光體發射峰波長則不受主體晶格尺寸的影響。
另一方面,我們也探討了活化劑離子濃度對SrM12O19: Eu3+或Tb3+ ( M = Al , Ga ) 發光強度的效應。並發現最佳Eu3+與Tb3+離子濃度分別為10 atom % 與3 atom %。SrM12O19: Cr3+ ( M = Al , Ga ) 與SrGa12O19: Mn2+三螢光體之溫度對發射光譜效應之研究顯示:前者中Cr3+離子之R lines 群所對應λem為692.6 , 694.2 nm,而後者Mn2+離子4T1→6A1躍遷所對應λem為503 nm ﹔而放射峰強度,則隨溫度降低而呈現增強的現象。
本研究也對MgGa2O4:M ( M = Eu3+ , Tb3+ , Mn2+ )系列螢光體之光致發光與陰極射線發光光譜深入探討。

This research is attempted to investigate the effect of host compositions, activator concentration, crystal structure, and temperature on the luminescent properties of magnetoplumbite-type Sr(Ga1-xAlx)12O19: R ( R = Eu3+ , Tb3+ , Cr3+ , Mn2+ ; 0 ≦x≦1.0) ( SGAO:R ) phosphors. The SGAO:R phases with R = Eu3+ , Tb3+ , Cr3+ , Mn2+ ) were prepared at 1,400℃ in the air via solid-state route, whereas the formation of SGAO:Mn2+ requires additional annealing under H2/Ar atmosphere at 1,000℃. The lattice dimensions of Sr(Ga1-xAlx)12O19: R were found to shrink gradually with increasing content of Al3+ dopant, as indicated by X-ray diffraction analysis.
In addition, SrGa12O19 was found to be self-activating with emission wavelength (λem) of 429 nm, whereas SrAl12O19 is not, as indicated by cathodoluminescence (CL) measurements. On the other hand, with shrunk lattice dimensions the λem corresponding to 2E →4A2 transition in Sr(Ga1-xAlx)12O19:Cr3+ exhibited blue shift, whereas that corresponding to 4T1→6A1 transition in Sr(Ga1-xAlx)12O19:Mn2+ exhibited red shift. These observation can be rationalized by Tanabe-Sugano diagrams for octahedral Mn2+ and Cr3+ ions , respectively. On the contrary, theλem attributed to Sr(Ga1-xAlx)12O19:Eu3+ or Tb3+ phosphors remains unchanged with expanded lattice dimensions.
Furthermore, we have also investigated the effect of activator concentration on the luminescent properties of SrM12O19:Eu3+ or Tb3+ ( M = Al, Ga ) and the optimal concentration was found to be 10 and 3 atom % for phases with Eu3+ and Tb3+ dopants, respectively. Theλem of typical R-lines of Cr3+ in SrM12O19: ( M = Al, Ga) has been determined to be 692.6 and 694.2 nm, respectively, and that attributed to 4T1→6A1 transition observed in SrGa12O19: Mn2+ was found to be 503 nm and highly dependent on the temperature, as indicated by temperature dependent photoluminescence (PL) emission studies.
The PL and CL emission spectra of MgGa2O4: M ( M = Eu3+ , Tb3+ , Mn2+ ) phases were also investigated in this research.

中文摘要…………………………………………………………………i
英文摘要…………………………………………………………………iii
誌謝…………………………………………………………………v
目錄…………………………………………………………………vi
表目錄…………………………………………………………………viii
圖目錄…………………………………………………………………ix
一﹑緒論……………………………………………………………1
二﹑螢光材料與其發光光譜原理簡介……………………………3
2.1螢光材料之應用分類…………………………………………3
2.2發光機制簡介…………………………………………………4
2.3發光原理與過程………………………………………………5
2.4螢光材料之設計………………………………………………6
2.5稀土離子在固態主體中的發光特性…………………………7
2.6過渡金屬離子在固態主體中的發光特性……………………8
2.7螢光體發光特性的量測………………………………………11
2.7.1光致發光光譜量測…………………………………11
2.7.2陰極射線發光光譜量測……………………………11
2.7.3色度座標之量測……………………………………12
2.8SrGa12O19與SrAl12O19之晶體結構……………………………13
2.9MgGa2O4與MgAl2O4之晶體結構…………………………………15
三﹑重要文獻回顧……………………………………………………16
四﹑研究方法…………………………………………………………19
4.1實驗藥品…………………………………………………………19
4.2儀器設備…………………………………………………………20
4.3實驗方法…………………………………………………………22
4.3.1 MgGa2O4:M ( M = Eu3+, Tb3+, Mn2+ )之固態合成……22
4.3.2 Sr(Ga1-xAlx)12O19:M (y%) ( M = Eu3+, Tb3+, Mn2+, Cr3+ ; 0≦x≦1; 0≦y≦ 10 ) 之固態合成……………………………23
五﹑結果與討論………………………………………………………24
5.1Mg(Ga1-xAlx)2O4系列X光繞射圖譜與主體結構之研究………24
5.2 Sr(Ga1-xAlx)12O19系列X光繞射圖譜與主體結構之研究……24
5.3Mg(Ga1-xAlx)2O4:M ( M = Eu3+,Tb3+,Mn2+ )系列螢光體光致
發光光譜之研究…………………………………………………25
5.4Sr(Ga1-xAlx)12O19 :M ( M = Eu3+,Tb3+ )系列螢光體光致發
光光譜之研究……………………………………………………27
5.5 Sr(Ga1-xAlx)12O19 :M ( M = Cr3+, Mn2+ )系列螢光體光致發
光光譜之主體組成效應…………………………………………28
5.6Sr(Ga1-xAlx)12O19 :M ( M = Cr3+, Mn2+ )系列螢光體光致發
光光譜之溫度效應………………………………………………31
5.7Sr(Ga1-xAlx)12O19 :M (M= Eu3+, Tb3+,Cr3+,Mn2+)系列螢光
體之陰極射線發光光譜之研究…………………………………32
5.8Sr(Ga1-xAlx)12O19 :M及Mg(Ga1-xAlx)2O4 :M系列螢光體色度
座標圖之研究……………………………………………………35
六﹑結論………………………………………………………………37
參考文獻……………………………………………………………………39
自傳

[1] J. J. Brown, ‘‘Fluorescent Manganese Activated Magnesium Gallate
Phosphor and Lamp”, U.S. Patent 3,407,325, (1968).
[2] J. J. Brown, ‘‘Cathodoluminescent Phosphors”, U.S. Patent 3,499,843,
(1970).
[3] A. H. Kitai, T.Xiao and G. Liu, “Doped Amorphous and Crystalline Gallium
Oxide, Alkaline Earth Gallates and Doped Zinc Germanate Phosphors as
Electroluminescent Materials”, U.S. Patent 5,725,801, (1998).
[4] A. H. Kitai and T.Xiao, “Doped Amorphous and Crystalline Alkaline Earth
Gallates as Electroluminescent Materials”, U.S. Patent 5,788,882, (1998).
[5] C. H. Kim, H. S. Bae, C. H. Pyun and G. Y. Hong, J. Korean. Chem. Soc.42
(1998) 588.
[6] G. Blasse and B. C. Grabmaier, ‘‘Luminescent Materials’’, Springer-
Verlag, Berlin Heidelberg, Germany (1994) 51.
[7] 楊俊英著 , ‘‘電子產業用螢光材料之應用調查’’ , 工研院, 民國81年。
[8] L. Ozawa, ‘‘Cathodoluminescence’’, Kodansha Ltd., Tokyo, (1990).
[9] P. Goldberg, ‘‘Luminescence of Inorganic Solids’’, Academic Press Inc.,
New York, (1966)
[10] 楊慶成編著 , ‘‘儀器分析’’ , 眾光圖書公司 , 民國81年。
[11] 參考文獻[6] , p.13.
[12] 參考文獻[6] , p.34.
[13] 參考文獻[6] , p.35.
[14] 參考文獻[6] , p.3.
[15] 參考文獻[6] , p.26.
[16] 參考文獻[6] , p.41.
[17] 參考文獻[6] , p.44.
[18] 參考文獻[6] , p.45.
[19] B. Henderson and G.F. Imbusch, ‘‘Optical Spectroscopy of Inorganic
Solids’’, Clarendon Press · Oxford, (1989) 410.
[20] 參考文獻[19] , p.429.
[21] 參考文獻[19] , p.265.
[22] F. A. Kroger, ‘‘Some Aspects of the Luminescence of Solids’’, Elsevier
Publishing Company Inc, New York, (1948) 74.
[23] 參考文獻[19] , p.431.
[24] 參考文獻[19] , p.134.
[25] 參考文獻[6] , p.52.
[26] B. G. Yacobi and D. B. Holt, “Cathodoluminescence Microscopy of
Inorganic Solids”, Plenum Press · New York and London, (1990) 55.
[27] 吳健康編著 , ‘‘數位影像分析’’ , 儒林圖書公司 , 民國81年, p.51。
[28] 高啟光編著 , ‘‘照明設計’’ , 儒林圖書公司 , 民國86年, p.4。
[29] R. C. Ropp, ‘‘Luminescence and the Solid State’’, Elsevier Science
Publishers, B. V., The Netherlands (1991) 344.
[30] K. Kimura, M. Ohgaki, K. Tanaka, H. Morikawa, and F. Marumo,
J. Solid. State. Chem. 87 (1990) 186.
[31] L. Xie and A. N. Comack, J. Solid. State. Chem. 83 (1989) 282.
[32] H. Graetsch and W. Gebert, Z. Kristallogr. 211 (1996) 25.
[33] H. Graetsch and W. Gebert, Z. Kristallogr. 209 (1993) 338.
[34] J. E. Weidenborner, N. R. Stemple and Y. Okaya, Acta. Cryst. 20 (1966)
761.
[35] A. Bergstein and W. B. White, J. Electrochem. Soc. 118 (1971) 1166.
[36] J. M. P. J. Verstegen, J. Solid. State. Chem. 7 (1973) 468.
[37] F. Haberey, R. Leckebusch, M. Rosenberg and K. Sahl, J. Cryst. Growth.
52 (1981) 734.
[38] F. Haberey, R. Leckebusch, M. Rosenberg and K. Sahl, J. Cryst. Growth.
61 (1983) 284.
[39] J. M. P. J. Verstegen, J. Electrochem. Soc. 121 (1974) 1623.
[40] V. P. Kobzareva, L. M. Kovba, L. M. Lopato, L. N. Lykova, and A. V.
Shevchenko, Russ. J. Inorg. Chem. 21 (1976) 904.
[41] Z. R. Kadyrova, N. A. Sirazhiddinov, and S. Kh. Tuganova, Inorg. Mater.
33 (1997) 360.
[42] J. J. Brown, J. Electrochem. Soc. 114 (1967) 245.
[43] C. W. W. Hoffman and J. J. Brown, J. Inorg. Nucl. Chem. 30 (1968) 63.
[44] R. L. Mohler and W. B. White, Mater. Res. Bull. 29 (1994) 1109.
[45] D. T. Palumbo and J. J. Brown, J. Electrochem. Soc. 117 (1970) 1184.
[46] R. L. Mohler and W. B. White, J. Electrochem. Soc. 142 (1995) 3923.
[47] U. R. R. Mendoza, V. D. Rodriguez and A.Ibarra, Radiat. Eff. Defect. S.
136 (1995) 29.
[48] N. W. Grime and R. J. Hilleard, J. Phys. C : Solid St . Phys. 3 (1970) 866.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔