(3.239.33.139) 您好!臺灣時間:2021/03/07 23:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳昇聰
研究生(外文):Sheng-Tsong Chen
論文名稱:鹼土鋁硼酸鹽螢光體電荷轉移與發光特性之研究
論文名稱(外文):A Study on the Charge Transfer and Luminescent Properties of Alkaline Earth Aluminoborate Phosphors
指導教授:陳登銘陳登銘引用關係
指導教授(外文):Teng-Ming Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:82
中文關鍵詞:發光電荷轉移能量轉移濃度猝滅效應鹼土硼酸鹽螢光體
外文關鍵詞:luminescenceCharge transferEnergy transferConcentration quenching effectAlkaline Earth AluminoboratePhosphors
相關次數:
  • 被引用被引用:1
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討分別摻雜Eu2+、Eu3+、Tb3+與Ce3+等活化劑離子的SrAl2B2O7螢光體之發光特性。另一方面,SrAl2B2O7:Eu, Tb電荷轉移機制、SrAl2B2O7:Ce3+, Tb3+能量轉移機制與(Sr1-xBax)Al2B2O7:Eu2+主體組成對其發光特性之效應,也在研究範圍之內。
本研究發現以SrAl2B2O7為主晶格螢光體,具有自身還原的機制, SrAl2B2O7:R(R= Eu2+, Ce3+, Tb3+)等螢光體之合成無需還原製程,其中SrAl2B2O7:Eu2+(或Tb3+)等更呈現強烈放射強度。
紫外光致發光光譜研究顯示SrAl2B2O7:Eu2+螢光體呈現一6P7/2→8S7/2陡峭放射峰與另一寬廣 4f7→4f65d 放射峰;而SrAl2B2O7:Ce3+螢光體則呈現無分裂之單一寬廣放射峰;另一方面SrAl2B2O7:Tb3+螢光體則呈現5D3→7F6與5D4→7FJ ( J = 3, 4, 5, 6)陡峭放射峰,其中對應於5D3→7F6遷移之發光行為,不受到螢光濃度猝滅效應的影響。
另一方面,SrAl2B2O7:R(R= Tb3+, Ce3+)螢光體中螢光濃度猝滅效應較SrAl2B2O7:Eu2+(或Eu3+)更為顯著,此可能與Eu3+ → Eu2+自我還原或Eu2+激發態與基態能階間具有過渡能態所致。
未經還原SrAl2B2O7:Eu, Tb螢光體電荷轉移研究中,本論文發現Eu2+離子6P7/2→8S7/2陡峭放射峰之強度,並未隨Tb3+離子摻雜量遞增而呈現隨之增加的現象。此外,SrAl2B2O7:Ce3+, Tb3+能量轉移機制使得Tb3+最佳光致發光強度(λex = 329 nm)相對於SrAl2B2O7:Tb3+ (λex = 220 nm)最佳發光強度二倍以上,因此以SrAl2B2O7作為主晶格的螢光體中,經由Ce3+ →Tb3+可望具有良好的能量轉移效率。
另一方面,本研究亦藉著系統化調變(Sr1-xBax)Al2B2O7:Eu2+系列螢光體之組成,以探討主體組成對其發光特性之效應。
The research is attempted to investigate the luminescent properties of SrAl2B2O7:R (R = Eu2+, Eu3+, Tb3+, and Ce3+) phosphors. In addition, the mechanism of charge transfer in SrAl2B2O7:Eu, Tb and energy transfer in SrAl2B2O7:Ce3+, Tb3+, and the host compositional dependence of photoluminescence(PL) of (Sr1-xBax)Al2B2O7:Eu2+ have also been investigated.
Our data have revealed that SrAl2B2O7:R (R = Eu2+, Tb3+, Ce3+) phosphors can be synthesized without the presence of reducing atmosphere. This fact can probably be attributed to the self-reduction property of SrAl2B2O7 that was probably related to low-melting B2O3 used as one of the reactants when being synthesized.
Ultraviolet photoluminescent emission spectra indicate that (a) in SrAl2B2O7:Eu2+, a broad band emission attributed to 4f65d → 4f7 and another line attributed to 6P7/2→8S7/2 transition was also observed;(b) in SrAl2B2O7:Ce3+ non-split broad band emission was observed;(c) in SrAl2B2O7:Tb3+ a sharp emission peak (whose intensity is independent of concentration quenching) attributed to 5D3→7F6 transition was also observed. We have also found that SrAl2B2O7 doped with Ce3+ or Tb3+ exhibited significant concentration quenching effect compared to that doped with Eu2+ or Eu3+, as indicated by the PL emission spectra.
The study on the charge transfer mechanism in non-reduced SrAl2B2O7:Eu0.025, xTb indicated that the emission intensity due to 6P7/2→8S7/2 was found to be independent of the codoped Tb3+ content. On the other hand, with codoping of Ce3+ in SrAl2B2O7:Tb3+ phase the fluorescent intensity was found to be enhanced by twice as much as that of SrAl2B2O7:Tb3+ phase. The observation has been rationalized with an efficient energy transfer mechanism from Ce3+ to Tb3+.
In addition, the host compositional dependence of luminescence for (Sr1-xBax)Al2B2O7:Eu2+ phase indicated that the emission wavelength of Eu2+ exhibited blue shift with increasing Ba2+ dopant contents. We also found that with increasing Ba2+ content the hue of (Sr1-xBax)Al2B2O7:Eu2+ phosphors changed from blue to whitish.
中文提要…………………………………………………………Ⅰ
英文提要…………………………………………………………Ⅲ
誌謝…………………………………………………………Ⅴ
目錄…………………………………………………………Ⅵ
圖目錄…………………………………………………………Ⅷ
第一章緒論……………………………………………………1
第二章螢光材料與相關理論簡介……………………………2
2.1螢光體與發光…………………………………………2
2.2具單一發光中心螢光體吸收和放射…………………3
2.3螢光體孤立發光中心之非輻射緩解…………………3
2.4稀土離子fn →fn組態間電子遷移行為之理論………4
2.5螢光體中能量轉移之研究……………………………5
2.6不同發光中心間的能量轉移之研究…………………5
2.7螢光體活化劑離子濃度猝滅效應……………………6
2.8金屬離子間電子轉移的機制…………………………7
2.9金屬與金屬間電荷的轉移之研究……………………8
2.10稀土離子間電荷轉移之研究…………………………8
2.11稀土離子價態轉換相關因素之研究…………………9
2.12螢光體之製備…………………………………………9
2.13發光光譜的量測………………………………………10
2.14硼鋁酸鹽螢光體合成與結晶化溫度之研究…………10
2.15色度座標的量測………………………………………10
第三章文獻回顧與研究動機…………………………………12
3.1文獻回顧………………………………………………12
3.2研究動機………………………………………………13
第四章實驗方法………………………………………………15
4.1實驗藥品………………………………………………15
4.2儀器設備………………………………………………16
4.3螢光樣品合成流程……………………………………18
第五章結果與討論……………………………………………23
5.1螢光體製程條件………………………………………23
5.2螢光體組成與純度鑑定………………………………24
5.3未還原SrAl2B2O7:2.5%Eu光致發光光譜之研究……24
5.4SrAl2B2O7:2.5%Eu2+光致發光光譜之研究……………25
5.5SrAl2B2O7:2.5%Eu2+螢光體陰極射線發光光譜之研究27
5.6SrAl2B2O7:4%Tb3+光致發光光譜之研究………………28
5.7SrAl2B2O7:4%Ce3+光致發光光譜之研究………………29
5.8摻雜稀土離子SrAl2B2O7螢光體濃度效應……………31
5.9SrAl2B2O7:Eu3+(或Tb3+)能階間交叉緩解速率對光
顏色的影響……………………………………………32
5.10SrAl2B2O7:Eu, Tb電荷轉移螢光體發光光譜之研究 33
5.11SrAl2B2O7:Ce0.043+, Tb0.043+螢光體發光性質之
探討………………………………………………………35
5.12SrAl2B2O7:Ce0.043+, Tb0.043+螢光體發光強度之研究
……………………………………………………………36
5.13未還原(Sr1-xBax)Al2B2O7:2.5%Eu螢光體光致發光
光譜之研究………………………………………………37
5.14(Sr1-xBax)Al2B2O7:2.5%Eu2+螢光體光致發光光譜
之研究……………………………………………………38
5.15螢光體SEM影像分析…………………………………38
5.16螢光體色度座標分析…………………………………39
第六章結論……………………………………………………41
參考文獻…………………………………………………………43
1. J. M. P. J. Verstegen, D. Radielovic and L. E. Vrenken, J. Electrochem. Soc. , 121, 1627 (1974).
2. G. Boulon, Mater. Chem. Phys. , 16, 301 (1987).
3. L. J. Andrews, G. H. Beall and A. Lempicki, J. Lumin. , 36, 65 (1986).
4. M. Leskela and M. Tammenmaa, Matter. Chem. Phys. , 16, 349 (1987).
5. G. Blasse, Mater. Chem. Phys. , 16, 201 (1987).
6. T. Matsuzawa, Y. Aoki, N. Takeuchi and Y. Murayama, J. Electrochem. Soc. , 143, 2670 (1996).
7. B. Saubt, M. Vlasse and C. Fouassier, J.Solid State Chem. , 34, 271 (1980).
8. 楊俊英著,〝電子產業用螢光材料之調查〞,工業技術研究院電子所,新竹,民國81年。
9. R. C. Powell and G. Blasse,〝Structure and Bonding 〞, vol.42, Springer Verlag, Heidelberg (1980).
10. 黃哲平著,〝照明設計〞,東華書局,台北市,民國82年。
11. G. Blasse and B. C. Grabmaier,〝Luminescent Materials〞(1994).
12. B. Dibartolo,〝Radiationless Processes〞, Plenum, New York (1980).
13. B. Dibartolo,〝Advances in Nonradiative Processes in solids〞, Plenum, New York (1991).
14. W. M. Yen and P. M. Selzer,〝Laser Spectroscopy of Solids〞, Springer, New York (1981).
15. L. A. Riseberg and M.J.Weber,〝Progress in optics〞, E.Wolf, ed. vol. XⅣ, North-Holland , Amsterdam (1976).
16. J. M. F. van Dijk, M. F. H. Schuurmans, J. Chem. Phys., 78, 5317 (1983).
17. G. Blasse,〝Structure and Bonding〞, vol.76, Springer Verlag, Heidelberg (1991).
18. C. S. Shi and Q. Su,〝The Chemistry and Physics of Abnormal Valency Rare Elements〞, Science Press, Beijing (1994).
19. R. C. Ropp,〝The Chemistry of Artificial Lighting Devices〞(1993).
20. A. Bril and W. L. Wanmaker, J. Electrochem. Soc. , 111, 1363 (1964).
21. F. C. Palilla, A. K. Levine and M. R. Tomakus, J. Electrochem. Soc. , 115, 642 (1968).
22. M. Gomi and Kanie, Jpn. J. Appl. Phys. , 35, 1798 (1996).
23. R. P. Rao, J. Electrochem. Soc. , 143, 189 (1996).
24. 陳一誠, 博士論文, 交通大學應用化學研究所 (1999)。
25. R. V. Kamat, K. T. Pillai, V. N. Vaidya, D. D. Sood, Mater. Chem. Phys. ,46, 67 (1996).
26. 朱穗君, 碩士論文,〝納米級鋁酸釔螢光體微粒之製備與特性鑑定〞, 交通大學應用化學研究所 (1998)。
27. R. C. Ropp,〝Luminescence and the Solid State〞(1991)
28. D. A. Skoog and J. J. Leary, 〝Principles of Instrumental Analysis〞, Fourth Edition (1992).
29. V. L. Schafer and H. J. Kuzel, Neues Jahrb. Mineral. , Monatsh, 131 (1967).
30. T. R. N. Kutty, Mat. Res. Bull., 25, 343 (1990).
31. F. Kellendonk and G. Blasse, J. Phys. Chem. Solids, 43, 481 (1982).
32. F. Kellendonk, T. van den Belt, and G. Blasse, J. Chem. Phys. , 76, 1194 (1982).
33. J. F. Macdowell, J. Am. Cerm. Soc. , 73, 2287 (1990).
34. K. S. Chang and D. A. Keszler, Mater. Res. Bull. , 33, 2 (1998).
35. Y. Gao, C. Shi and Y. Wu, Mater. Res. Bull. , 31, 439 (1996).
36. H. You and G. Hong, Mater. Res. Bull. , 32, 785 (1997).
37. Q. Zeng, Z. Pei, S. Wang and Q. Su, J. of Alloys and Comp. , 275-277, 238 (1998).
38. B. R. Judd , Phys. Rev., 127, 750 (1962).
39. G. S. Ofelt, J. of Chem. Phys., 37, 511 (1962).
40. C. K. Jorgensen,〝Absorption Spectra and Chemical Bonding in Complex〞, Pergamon, Oxford (1962).
41. C. K. Jorgensen ,〝Modern Aspects of Ligand Field Theory〞, North -Holland, Amsterdam (1971).
42. A. B. P. Lever, 〝Inorganic Electronic Spectroscopy〞, 2nd ed., Elsevier, Amsterdam (1984).
43. A. Akella and D. A. Keszler, Mater. Res. Bull. , 30, 105 (1995).
44. J. F. Owen, P. B. Dorain and T. Kobayasi, J. Appl. Phys. , 52, 1216 (1981).
45. B. Smets, J. Rutten, G. Hoeks, and J. Verlijsdonk, J. Electrochem. Soc. , 136, 2119(1989).
46. A. Meijerink, J. Nuyten and G. Blasse, J. Lumin. , 44, 19 (1989).
47. A. M. Srivastava, M. T. Sobieraj, A. Valossis, S. K. Ruan, and E. Banks, J. Electrochem. Soc. , 137, 2959 (1990).
48. W. van Schaik, S. Lizzo, W. Smit, and G. Blasse, J. Electrochem. Soc. , 140, 216 (1993).
49. I. Couwenberg, K. Binnemas, H. D. Leebeeck and C. G. Walrand, J. of Alloys and Comp. , 274, 157 (1998).
50. W. J. Schipper, D. van der Voort, P. Van den Berg, Z. A. E. P. Vroon and G.Blasse, Mater. Chem. Phys. , 33, 311 (1993).
51. 余昭蓉, 碩士論文,〝摻加稀土元素鋁酸釔螢光體之合成與特性鑑定〞, 交通大學應用化學研究所 (1997)。
52. G. Blasse and A. Bril , J. Chem. Phys., 47, 5139 (1967).
53. C. Fouassier, B. Saubat and P. Hagenmuller, J. Lumin. , 23, 405 (1981).
54. K. Machida, G. Adachi and J. Shiokawa, J. Lumin. , 21, 101 (1979).
55. P. A. M. Berdowski and G. Blasse, Chem. Phys. Lett. , 107, 351 (1984).
56. Y. Wu and C. Shi(石春山), Solid State Commun. , 95, 319 (1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔