跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 08:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周章
研究生(外文):Jang Jou
論文名稱:期後誤差估計之通用架構
論文名稱(外文):A General Framework For A Posteriori Error Estimation
指導教授:劉晉良劉晉良引用關係
指導教授(外文):Jinn-Liang Liu
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:81
中文關鍵詞:期後誤差估計適應性計算有限元素法邊界元素法橢圓偏微分方程式雙曲偏微分方程式Stokes 方程式邊界積分方程式
外文關鍵詞:a posteriori error estimationadaptive computationfinite element methodboundary element methodelliptic PDEhyperbolic PDEthe Stokes equationboundary integral equation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
各種邊界值問題在得到數值解之後,對於誤差估計之方法在此篇論文中給
予一個一般性的統一架構。 本文針對有限元素法、邊界元素法應用在
線性橢圓偏微分方程式、 Stokes 方程式、雙曲及混合型偏微分方程式及
邊界積分方程式等問題誤差估計之研究、探討。基於區域化弱餘式問題上
所求得之解,我們發展並分析其協調性與非協調性的誤差估計方法。
此法起始於決定一個餘式問題的變分公式,接著對此式在一適當建立的
區域化基底函數空間中求解。 我們先建立一個一般性的統一架構,然後
對於所要探討的兩類方法與幾種邊界值問題逐一驗證架構中所應具的
形式與條件。儘管誤差估計的公式能夠相當簡單與一致化,理論之確立
卻相對的顯得困難。此篇論文主要部份即在完成其誤差估計方法在上述
所提有限元素、邊界元素兩種方法於四個邊界值問題上所做的理論探究。
This thesis presents a general and unified framework for
obtaining numerical estimates of the accuracy of approximations
to solutions of various boundary value problems. The study
focuses on finite element and boundary element methods for
problems including linear elliptic partial differential
equations, the Stokes equations, hyperbolic and mixed-type
partial differential equations and boundary integral equations.
Based on the solutions of local weak residual problems,
conforming and nonconforming error estimators are developed and
analyzed. The approach begins with the variational formulation
of residual problems which are then solved element-by-element
by proper construction of local shape functions on each
element. A general setting is first given and then specifically
verified for each individual method or each one of BVPs
considered herein. Although the implementation of the error
estimation can be fairly simple and unified, theoretical
justification of the resulting error estimators is relatively
problematic. This thus constitutes a major part of theoretical
presentation of the thesis.
Cover
Abstract
Acknowledgment
Contents
PART I General Theory
Chapter 1 Introduction
1.1 Overview
1.2 An Integrated Adaptive Algorithm
1.3 A Unified Approach to A Posteriori Error Estimation
Chapter 2 General Theory
2.1 Sobolev and Finite Element Spaces
2.2 General Framework for Conforming and Nonconforming Estimators
PART II Applications
Chapter 3 Elliptic Partial Differential Equations
3.1 The Poisson Problem
3.2 General Elliptic PDEs
3.3 Numerical Example
Chapter 4 The Stokes Equations
4.1 Preliminaries
4.2 Conforming Error Estimator
4.3 Nonconforming Error Estimator
4.4 Comparison with Other Estimators
Chapter 5 Hyperbolic and Mixed-Type PDEs
5.1 Preliminaries
5.2 Conforming Error Estimator
5.3 Noconforming Error Estimator
5.4 Model Problems
5.5 Numerical Example
Chapter 6 Boundary Integral Equatioins
6.1 Symm''s Intgral Equation
6.2 Hypersingular Integrall Equations
6.3 Numerical Examples
References
CURRICULUM VITAE
References

1. R.A. Adams, Sobolev Spaces, Pure and Applied Mathematics Series,
Vol. 65, Academic Press, 1978
2. S. Adjerid and J. E. Flaherty, Second-order finite element
approximations and a posteriori error estimation for two-dimensional
parabolic systems, Numer. Math., 53 (1988),
183-198.
3. S. Adjerid, J. E. Flaherty and Y. J. Wang, A posteriori error
estimation with finite element methods of lines for
one-dimensional parabolic systems, Numer. Math., 65 (1993), 1-21.
4. M. Ainsworth and J. T. Oden, A unified approach to a posteriori
error estimation using element residual methods, Numer. Math., 65
(1993), 23-50.
5. M. Ainsworth and J. T. Oden, A posteriori error estimators for the
Stokes and Oseen equations, SIAM. J. Numer. Anal. 34 (1997),
228-245.
6. O. Axelsson and V. A. Barker, Finite Element Solution of Boundary
Value Problems, Theory and Computation, Academic Press,Inc.
(1984).
7. A. K. Aziz and S. H. Leventhal, Numerical solution of linear
partial differential equations of elliptic-hyperbolic type, in
Numerical Solution of Partial Differential Equations III, B. E.
Hubbard, ed., Academic Press (1976), 55-88.
8. A. K. Aziz and J. -L. Liu, A weighted least squares method for the
backward-forward heat equation, SIAM J. Numer. Anal., 28 (1991),
156-167.
9. I. Babu\v {ska and A. K. Aziz, Survey Lectures on the Mathematical
Foundations of the Finite Element Method, A. K. Aziz ed., Academic
Press, New York, 1972.
10. J. Barager and H. El Amri, Estimateurs a posteriori d''erreur pour
le calcul adaptatif d''ecoulements quasi-Newtoniens, Math. Model
Numer. Anal. 25 (1991), 31-48.
11. I. Babuska and A. Miller, The post-processing approach in the
finite element methods, Part 1: Calculation of displacements,
stresses and other higher derivatives of the displacements , Int.
J. Numer. Meth. Eng., 20 (1984), 1085-1109, Part 2: The
calculation of stress intensity factors,
Int. J. Numer. Meth. Eng., 20 (1984), 1111-1129, Part 3: A
posteriori error estimates and adaptive mesh selection, Int. J.
Numer. Meth. Eng., 20 (1984), 2311-2324.
12. I. Babuska and W. C. Rheinboldt, Error estimates for adaptive
finite element computations, SIAM J. Numer. Anal. 15 (1978),
736-754.
13. I. Babuska and W. C. Rheinboldt, A-posteriori error estimates for
the finite element method, Int. J. Numer. Methods Engrg. 12
(1978), 1597-1615.
14. I. Babuska, T. Strouboulis and C.S. Upadhyay, A model study of a
posteriori error estimators for linear elliptic problems. Error
estimation in the interior of patchwise uniform grids of
triangles, Comput. Methods Appl. Mech. Emgrg. 114 (1994), 307-378.
15. I. Babuska, T. Strouboulis, C.S. Upadhyay, S.K. Gangaraj and K.
Copps, Validation of a posteriori error estimators by numerical
approach, Int. J. Numer. Methods Engrg.37 (1994), 1073-1123.
16. R. E. Bank, Hierarchical bases and the finite element method, Acta
Numerica 1996 (A. Iserles, ed.), Cambridge University Press 1996,
1-43.
17. R. E. Bank and R. K. Smith, A posteriori error estimates based on
hierarchical bases, SIAM J. Numer. Anal., 30 (1993), 921-935.
18. R. E. Bank and A. Weiser, Some a posteriori error estimators for
elliptic partial differential equations, Math. Comp., 44 (1985),
283-301.
19. R. E. Bank and B. D. Welefert, A posteriori error estimates for
the Stokes equations, SIAM. J. Numer. Anal. 28 (1991), 591-623.
20. I. Babuska and D. Yu, Asymptotically exact a posteriori error
estimator for bi-quadratic elements, Fin. Elem. in. Anal. Design,
3 (1987), 341-354.
21. C. A. Brebbia, Boundary Element Methods, Springer-Verlag, New
York, 1981.
22. F. A. Bornemann, B. Erdmann and R. Kornhuber, A posteriori error
estimates for elliptic problems in two and three space dimensions,
SIAM J. Numer. Anal. 33 (1996), 1188-1204.
23. T. Cao, Adaptive H- and H-R methods for Symm''s integral equation,
Comput. Methods Appl. Mech. Engrg. 162 (1998), 1-17.
24. C. Carstensen, An a posteriori error estimate for a first-kind
integral equation, Math. Comp. 66 (1997), 139-155.
25. C. Carstensen, D. Estep and P. Stephan, h-adaptive boundary
element schemes, Computational Mechanics 15 (1995), 372-383.
26. C. Carstensen and E. P. Stephan, A posteriori error estimates for
boundary element methods, Math. Comp. 64 (1995), 483-500.
27. G. Chen and J. Zhou, Boundary Element Methods, Academic Press,
London, (1992).
28. P. G. Ciarlet, The Finite Element Method for Elliptic Problems,
North-Holland, New York, 1978.
29. R. W. Clough, Original formulation of the finite element method,
Finite Elem. in Anal. and Design 7 (1990), 89-101.
30. M. Costabel, Boundary integral operators on Lipschitz domains :
Elementary results, SIAM J. Math. Anal. 19 (1988), 613-626.
31. L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy, Toward a
universal h-p adaptive finite element strategy. Part 1.
Constrained approximation and data structure, Compt. Meth. Appl.
Mech. Engng., 77 (1989), 79-112.
32. V. Eijkhout and P. Vassilevski, The role of the strengthened
Cauchy-Buniakowskii-Schwarz inequality in multilevel methods ,
SIAM Review, 33 (1991), 405-419.
33. B. Faermann, Lokale a-posteriori-Fehlerschatzer ber der
Diskretisierung von Randintegralgleichungen, PhD-thesis,
University of Kiel, FRG.
34. M. Feistauer, G. C. Hsiao, and R. E. Kleinman, Asymptotic and a
posteriori error estimates for boundary element solution of
hypersingular integral equations, SIAM J. Numer. Anal. 33 (1996),
666-687.
35. K. O. Friedrichs, Symmetric positive differential equations, Comm.
Pure Appl. Math., 11 (1958), 333-418.
36. G. N. Gatica and G. C. Hsiao , On the coupled BEM and FEM for a
nonlinear exterior Dirichlet problem in R^2, Numer. Math. 61
(1992), 171-214.
37. V. Girault and P.-A. Raviart, Finite Element Methods for
Navier-Stokes Equations, Springer, Berlin (1986).
38. N. Heuer, E. P. Stephan, and T. Tran, Multilevel adaptive Schwarz
method for the h-p version of the Galerkin boundary element
method, Math. Comp. 67 (1998), 501-518.
39. G. C. Hsiao and S. Zhang, Optimal order multigrid methods for
solving exterior boundary value problems, SIAM J. Numer. Anal. 31
(1994), 680-694.
40. C. Johnson, Numerical Solution of Partial Differential Equations
by the Finite Element Method, Cambridge University Press, 1987.
41. T. Katsanis, Numerical solution of Tricomi equation using theory
of symmetric positive differential equations, SIAM J. Numer.
Anal., 6 (1969), 236-253.
42. P. Lesaint, Finite element methods for symmetric hyperbolic
equations, Numer. Math., 21 (1973), 244-255
43. J. L. Lions and E. Magenes, Non-homogeneous Elliptic Boundary
Value Problems and Applications, Vol. I, Springer-Verlag, Berlin,
1972.Numer. Math., 21 (1996), 439-467.
44. J.-L. Liu, Error estimators for finite element solutions of linear
and nonlinear partial differential equations, Advances in Computer
Methods for Partial Differential Equations - VII, (Ed.) R.
Vichnevetsky, D. Knight and G. Richter, IMACS, (1992), 459-463.
45. J.-L. Liu, Weak residual error estimates for symmetric positive
systems, Numer. Funct. Anal. and Optimiz., 14 (1993), 607-619.
46. J.-L. Liu, A finite difference method for symmetric positive
differential equations, Math. Comp., 62 (1994), 105-118.
47. J.-L. Liu, On weak residual error estimation, SIAM J. on Sci.
Comput., 14 (1996), 1249-1268.
48. J.-L. Liu, Exact a posteriori error analysis of the least squares
finite element method, submitted (1997).
49. J.-L. Liu, I.-J. Lin, and M.-C. Hsieh, An outline of adaptive
computation: theory, implementation, and applications, J. Chinese
Soci. Mech. Engrg., 19 (1998), 149-157.
50. J.-L. Liu, I.-J. Lin, M.-Z. Shih, R.-C. Chen and M.-C. Hsieh,
Object oriented programming of adaptive finite element and finite
volume methods, Appl. Numer. Math., 21 (1996), 439-467.
51. J.-L. Liu and W. C. Rheinboldt, A posteriori finite element error
estimators for indefinite elliptic boundary value problems ,
Numer. Funct. Anal. and Optimiz., 15 (1994), 335-356.
52. J.-L. Liu and W. C. Rheinboldt, A posteriori finite element error
estimators for parametrized nonlinear boundary value problems ,
Numer. Funct. Anal. and Optimiz., 17 (1996), 605-637.
53. J. T. Oden, L. Demkowicz, W. Rachowicz and T. A. Westermann,
Toward a universal h-p adaptive finite element strategy, Part 2. A
posteriori error estimation{, Compt. Meth. Appl. Mech. Engng., 77
(1989), 113-180.
54. J. T. Oden, W. Wu, and M. Ainsworth, An a posteriori error
estimate for finite element approximations of the Navier-Stokes
equations, Compt. Meth. Appl. Mech. Engng. 111 (1994), 185-202.
55. F. V. Postell and P. Stephan, On the h-, p- and h-adaptive
versions of the boundary element method--numerical results ,
Comput. Methods Appl. Mech. Engrg. 83 (1990), 69-89.
56. I. H. Sloan and A. Spence, The Galerkin method for integral
equations of the first kind with logarithmic kernel: Theory, IMA
J. Numer. Anal. 8 (1988),105-122.
57. B. A. Szabo and I. Babuska, Finite Element Analysis,
Wiley, New York, 1991.
58. E. Suli, A posteriori error analysis and global error control for
adaptive finite element approximations of hyperbolic problems, In:
D. F. Griffiths and G. A. Watson, eds., Proceedings of the 16th
International Conference on Numerical Analysis, Dundee, 1995,
Pitman Research Notes in Mathematics, Longman Scientific and
Technical, Harlow.
59. V. Vanaja and R. B. Kellogg, Iterative methods for a
forward-backward heat equation, SIAM J. Numer. Anal., 27 (1990),
622-635.
60. R. Verfurth, A posteriori error estimates for the Stokes
equations, Numer. Math., 55 (1989), 309-325.
61. R. Verfurth, A Review of A Posteriori Error Estimation and
Adaptive Mesh-Refinement Techniques, B. G. Teubner, Stuttgart,
1996.
62. R. Verfurth, A posteriori error estimators for the Stokes
equations II Non-conforming discretizations, Numer. Math. 60
(1991), 235-249.
63. W. L. Wendland and P. Stephan, A hypersingular boundary integral
method for two-dimensional screen and crack problems , Arch.
Rational Mech. Anal., 112 (1990), 363-390.
64. W. L. Wendland and D. Yu, Adaptive boundary element methods for
strongly elliptic integral equations, Numer. Math. 53 (1988),
539-558.
65. W. L. Wendland and D. Yu, A posteriori local error estimates of
boundary element methods with some pseudo-differential equations
on closed curves, J. Comput. Math. 10 (1992), 273-289.
66. M.F. Wheeler and J.R. Whiteman, Superconvergent recovery of
gradients on subdomains from piecewise linear finite-element
approximations, Numer. Mehtods Partial Diff. Eqns. 3 (1987),
357-374.
67. O. C. Zienkiewicz, The Finite Element Method, 3rd ed.,
McGraw-Hill, New York, 1977.
68. O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and
adaptive procedure for practical engineering analysis,
Int. J. Numer. Meth. Engrg., 24 (1987), 337-357.
69. O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch
recovery (SPR) and adaptive finite element refinement, Comput.
Methods Appl. Mech. Engrg. 101 (1992), 207-224
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊