|
References
1. R.A. Adams, Sobolev Spaces, Pure and Applied Mathematics Series, Vol. 65, Academic Press, 1978 2. S. Adjerid and J. E. Flaherty, Second-order finite element approximations and a posteriori error estimation for two-dimensional parabolic systems, Numer. Math., 53 (1988), 183-198. 3. S. Adjerid, J. E. Flaherty and Y. J. Wang, A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems, Numer. Math., 65 (1993), 1-21. 4. M. Ainsworth and J. T. Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math., 65 (1993), 23-50. 5. M. Ainsworth and J. T. Oden, A posteriori error estimators for the Stokes and Oseen equations, SIAM. J. Numer. Anal. 34 (1997), 228-245. 6. O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems, Theory and Computation, Academic Press,Inc. (1984). 7. A. K. Aziz and S. H. Leventhal, Numerical solution of linear partial differential equations of elliptic-hyperbolic type, in Numerical Solution of Partial Differential Equations III, B. E. Hubbard, ed., Academic Press (1976), 55-88. 8. A. K. Aziz and J. -L. Liu, A weighted least squares method for the backward-forward heat equation, SIAM J. Numer. Anal., 28 (1991), 156-167. 9. I. Babu\v {ska and A. K. Aziz, Survey Lectures on the Mathematical Foundations of the Finite Element Method, A. K. Aziz ed., Academic Press, New York, 1972. 10. J. Barager and H. El Amri, Estimateurs a posteriori d''erreur pour le calcul adaptatif d''ecoulements quasi-Newtoniens, Math. Model Numer. Anal. 25 (1991), 31-48. 11. I. Babuska and A. Miller, The post-processing approach in the finite element methods, Part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , Int. J. Numer. Meth. Eng., 20 (1984), 1085-1109, Part 2: The calculation of stress intensity factors, Int. J. Numer. Meth. Eng., 20 (1984), 1111-1129, Part 3: A posteriori error estimates and adaptive mesh selection, Int. J. Numer. Meth. Eng., 20 (1984), 2311-2324. 12. I. Babuska and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), 736-754. 13. I. Babuska and W. C. Rheinboldt, A-posteriori error estimates for the finite element method, Int. J. Numer. Methods Engrg. 12 (1978), 1597-1615. 14. I. Babuska, T. Strouboulis and C.S. Upadhyay, A model study of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles, Comput. Methods Appl. Mech. Emgrg. 114 (1994), 307-378. 15. I. Babuska, T. Strouboulis, C.S. Upadhyay, S.K. Gangaraj and K. Copps, Validation of a posteriori error estimators by numerical approach, Int. J. Numer. Methods Engrg.37 (1994), 1073-1123. 16. R. E. Bank, Hierarchical bases and the finite element method, Acta Numerica 1996 (A. Iserles, ed.), Cambridge University Press 1996, 1-43. 17. R. E. Bank and R. K. Smith, A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal., 30 (1993), 921-935. 18. R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44 (1985), 283-301. 19. R. E. Bank and B. D. Welefert, A posteriori error estimates for the Stokes equations, SIAM. J. Numer. Anal. 28 (1991), 591-623. 20. I. Babuska and D. Yu, Asymptotically exact a posteriori error estimator for bi-quadratic elements, Fin. Elem. in. Anal. Design, 3 (1987), 341-354. 21. C. A. Brebbia, Boundary Element Methods, Springer-Verlag, New York, 1981. 22. F. A. Bornemann, B. Erdmann and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996), 1188-1204. 23. T. Cao, Adaptive H- and H-R methods for Symm''s integral equation, Comput. Methods Appl. Mech. Engrg. 162 (1998), 1-17. 24. C. Carstensen, An a posteriori error estimate for a first-kind integral equation, Math. Comp. 66 (1997), 139-155. 25. C. Carstensen, D. Estep and P. Stephan, h-adaptive boundary element schemes, Computational Mechanics 15 (1995), 372-383. 26. C. Carstensen and E. P. Stephan, A posteriori error estimates for boundary element methods, Math. Comp. 64 (1995), 483-500. 27. G. Chen and J. Zhou, Boundary Element Methods, Academic Press, London, (1992). 28. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, New York, 1978. 29. R. W. Clough, Original formulation of the finite element method, Finite Elem. in Anal. and Design 7 (1990), 89-101. 30. M. Costabel, Boundary integral operators on Lipschitz domains : Elementary results, SIAM J. Math. Anal. 19 (1988), 613-626. 31. L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy, Toward a universal h-p adaptive finite element strategy. Part 1. Constrained approximation and data structure, Compt. Meth. Appl. Mech. Engng., 77 (1989), 79-112. 32. V. Eijkhout and P. Vassilevski, The role of the strengthened Cauchy-Buniakowskii-Schwarz inequality in multilevel methods , SIAM Review, 33 (1991), 405-419. 33. B. Faermann, Lokale a-posteriori-Fehlerschatzer ber der Diskretisierung von Randintegralgleichungen, PhD-thesis, University of Kiel, FRG. 34. M. Feistauer, G. C. Hsiao, and R. E. Kleinman, Asymptotic and a posteriori error estimates for boundary element solution of hypersingular integral equations, SIAM J. Numer. Anal. 33 (1996), 666-687. 35. K. O. Friedrichs, Symmetric positive differential equations, Comm. Pure Appl. Math., 11 (1958), 333-418. 36. G. N. Gatica and G. C. Hsiao , On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in R^2, Numer. Math. 61 (1992), 171-214. 37. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer, Berlin (1986). 38. N. Heuer, E. P. Stephan, and T. Tran, Multilevel adaptive Schwarz method for the h-p version of the Galerkin boundary element method, Math. Comp. 67 (1998), 501-518. 39. G. C. Hsiao and S. Zhang, Optimal order multigrid methods for solving exterior boundary value problems, SIAM J. Numer. Anal. 31 (1994), 680-694. 40. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, 1987. 41. T. Katsanis, Numerical solution of Tricomi equation using theory of symmetric positive differential equations, SIAM J. Numer. Anal., 6 (1969), 236-253. 42. P. Lesaint, Finite element methods for symmetric hyperbolic equations, Numer. Math., 21 (1973), 244-255 43. J. L. Lions and E. Magenes, Non-homogeneous Elliptic Boundary Value Problems and Applications, Vol. I, Springer-Verlag, Berlin, 1972.Numer. Math., 21 (1996), 439-467. 44. J.-L. Liu, Error estimators for finite element solutions of linear and nonlinear partial differential equations, Advances in Computer Methods for Partial Differential Equations - VII, (Ed.) R. Vichnevetsky, D. Knight and G. Richter, IMACS, (1992), 459-463. 45. J.-L. Liu, Weak residual error estimates for symmetric positive systems, Numer. Funct. Anal. and Optimiz., 14 (1993), 607-619. 46. J.-L. Liu, A finite difference method for symmetric positive differential equations, Math. Comp., 62 (1994), 105-118. 47. J.-L. Liu, On weak residual error estimation, SIAM J. on Sci. Comput., 14 (1996), 1249-1268. 48. J.-L. Liu, Exact a posteriori error analysis of the least squares finite element method, submitted (1997). 49. J.-L. Liu, I.-J. Lin, and M.-C. Hsieh, An outline of adaptive computation: theory, implementation, and applications, J. Chinese Soci. Mech. Engrg., 19 (1998), 149-157. 50. J.-L. Liu, I.-J. Lin, M.-Z. Shih, R.-C. Chen and M.-C. Hsieh, Object oriented programming of adaptive finite element and finite volume methods, Appl. Numer. Math., 21 (1996), 439-467. 51. J.-L. Liu and W. C. Rheinboldt, A posteriori finite element error estimators for indefinite elliptic boundary value problems , Numer. Funct. Anal. and Optimiz., 15 (1994), 335-356. 52. J.-L. Liu and W. C. Rheinboldt, A posteriori finite element error estimators for parametrized nonlinear boundary value problems , Numer. Funct. Anal. and Optimiz., 17 (1996), 605-637. 53. J. T. Oden, L. Demkowicz, W. Rachowicz and T. A. Westermann, Toward a universal h-p adaptive finite element strategy, Part 2. A posteriori error estimation{, Compt. Meth. Appl. Mech. Engng., 77 (1989), 113-180. 54. J. T. Oden, W. Wu, and M. Ainsworth, An a posteriori error estimate for finite element approximations of the Navier-Stokes equations, Compt. Meth. Appl. Mech. Engng. 111 (1994), 185-202. 55. F. V. Postell and P. Stephan, On the h-, p- and h-adaptive versions of the boundary element method--numerical results , Comput. Methods Appl. Mech. Engrg. 83 (1990), 69-89. 56. I. H. Sloan and A. Spence, The Galerkin method for integral equations of the first kind with logarithmic kernel: Theory, IMA J. Numer. Anal. 8 (1988),105-122. 57. B. A. Szabo and I. Babuska, Finite Element Analysis, Wiley, New York, 1991. 58. E. Suli, A posteriori error analysis and global error control for adaptive finite element approximations of hyperbolic problems, In: D. F. Griffiths and G. A. Watson, eds., Proceedings of the 16th International Conference on Numerical Analysis, Dundee, 1995, Pitman Research Notes in Mathematics, Longman Scientific and Technical, Harlow. 59. V. Vanaja and R. B. Kellogg, Iterative methods for a forward-backward heat equation, SIAM J. Numer. Anal., 27 (1990), 622-635. 60. R. Verfurth, A posteriori error estimates for the Stokes equations, Numer. Math., 55 (1989), 309-325. 61. R. Verfurth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, B. G. Teubner, Stuttgart, 1996. 62. R. Verfurth, A posteriori error estimators for the Stokes equations II Non-conforming discretizations, Numer. Math. 60 (1991), 235-249. 63. W. L. Wendland and P. Stephan, A hypersingular boundary integral method for two-dimensional screen and crack problems , Arch. Rational Mech. Anal., 112 (1990), 363-390. 64. W. L. Wendland and D. Yu, Adaptive boundary element methods for strongly elliptic integral equations, Numer. Math. 53 (1988), 539-558. 65. W. L. Wendland and D. Yu, A posteriori local error estimates of boundary element methods with some pseudo-differential equations on closed curves, J. Comput. Math. 10 (1992), 273-289. 66. M.F. Wheeler and J.R. Whiteman, Superconvergent recovery of gradients on subdomains from piecewise linear finite-element approximations, Numer. Mehtods Partial Diff. Eqns. 3 (1987), 357-374. 67. O. C. Zienkiewicz, The Finite Element Method, 3rd ed., McGraw-Hill, New York, 1977. 68. O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Meth. Engrg., 24 (1987), 337-357. 69. O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement, Comput. Methods Appl. Mech. Engrg. 101 (1992), 207-224
|