(3.231.29.122) 您好!臺灣時間:2021/02/25 16:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:彭智康
研究生(外文):Chi-Hong Pang
論文名稱:低溫處理對污泥脫水特性之影響
論文名稱(外文):Effect of Low-Temperature Treatment on Sludge Dewatering Characteristics
指導教授:黃志彬黃志彬引用關係袁如馨袁如馨引用關係
指導教授(外文):Chihpin HuangJill Ruhsing Pan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:100
中文關鍵詞:低溫處理污泥調理高分子聚合物流變黏度加藥量
外文關鍵詞:Low-Temperature conditioingsludge conditoningpolyelectrolytesrheologyviscositypolymer dosing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:160
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
近年來由於自來水使用之普及化及政府當局對廢水處理日益嚴格之要求,致使自來水之需求量及污水處理量明顯上升,也造成污泥年產量大幅增加。如何有效地作污泥調理以減少污泥之最終體積,並做好最終處置之預備,將是一日益重要的研究目標。傳統之污泥調理方法為添加高分子調理劑作化學調理,但由於相關之環保法規日趨嚴格,對淨水廠中能使用之高分子聚合物之種類及劑量有諸多限制,因此,多年來已有許多學者積極尋求一取代高分子調理之方法。本研究之目的為探討低溫處理及搭配化學調理對污泥調理脫水之影響,探討項目包含以冷藏溫度、時間及降溫速率之影響,期以低溫處理替代化學調理,或以低溫調理搭配化學調理作污泥調理,以減少高分子調理劑之加藥量。
研究結果顯示低溫處理之關鍵在於污泥結冰與否。在冷藏溫度未使污泥結冰時,低溫處理對污泥調理脫水並無明顯改善效果,但在搭配化學調理時,脫水速率之改善效果則遠優於單作化學調理,並可以低溫處理減低化學調理所須之加藥量。若將溫度降至使污泥結冰,其脫水性、過濾性、沉降性及脫水速率皆有顯著之改善效果,且較慢之降溫速度、較長之冷藏時間及較低之溫度有較佳之調理效果。

Currently, approximately one hundred and seventy thousand tons of sludge is produced annually from the water treatment plants in Taiwan. This amount is expected to increase astronomically due to the increasing demand for more quality water and the more stringent regulations regarding wastewater treatments implemented by the Government. How to minimize the sludge volume and optimize the sludge condition for final disposal in an efficient way has become the focus of many studies. Traditionally, sludge is conditioned chemically by using polymers. The current law forbids the discharge of wastewater containing certain types of polymers into water bodies, which limits the use of polymers. Other disadvantages of using polyelectrolytes include their significant cost and safety concerns. Therefore, it is necessary to search for other options for sludge conditioning. In this study, the feasibility of low-temperature treatment was evaluated. Cationic polyelectrolyte was also applied with the low-temperature treatment. Experimental conditions such as temperature, duration of cold storage, and the rate of lowering the temperature of the sludge are manipulated to find the most efficient conditioning.
Experimental results indicate that the success of low-temperature treatment relies on the degree of freezing. After the freezing/thawing stage, the dewaterability, filterability and settling properties were all improved greatly. Better performance was observed at slower freezing rates, lower temperatures and longer period of freezing time. If the temperature was not low enough to freeze the sludge, no significant change in dewatering characteristics was observed. When low-temperature treatment was combined with polyelectrolyte conditioning, the improvement in dewatering rate was better than chemical conditioning alone, suggesting that low-temperature treatment may replace the use of polymer to some extent.

中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
誌謝……………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅳ
圖目錄………………………………………………………………Ⅷ
表目錄…………………………………………………………………Ⅹ
第一章 緒論……………………………………………………………1
第二章 研究背景及文獻回顧…………………………………………5
2.1 污泥調理………………………………………………………5
2.1.1 調理方法…………………………………………………5
2.1.2 調理機制…………………………………………………6
2.1.2.1 生物性調理………………………………………6
2.1.2.2 化學性調理………………………………………6
2.1.2.3 物理性調理………………………………………7
2.2 低溫調理…………………………………………………9
2.2.1 低溫處理之競爭力………………………………………9
2.2.2 對污泥調理脫水之影響….……………………………12
2.2.2.1 化學性之影響……………………..……………12
2.2.2.2 物理性(形狀、大小及密度)之影響……………14
2.2.3 冷凍降溫方式…………………………………………..15
2.2.4 污泥凍融處理之影響因子……………………………16
2.2.4.1 冷凍速率之影響………………………………16
2.2.4.2 冷凍時間及溫度之影響………………………..17
2.2.4.3 污泥顆粒大小之影響…………………………18
2.3 污泥調理及脫水性評估試驗…………………………………18
2.3.1 自由沉降試驗…………………………………………19
2.3.2 毛細汲取時間試驗……………………………………19
2.3.3 布氏漏斗試驗…………………………………………21
2.3.4 流變分析………………………………………………21
2.3.4.1 原理……………………………………………22
2.3.4.2 應用……………………………………………24
2.3.4.3 影響污泥流變之因素…………………………25
第三章 實驗方法及設備………………………………………………27
3.1 污泥來源………………………………………………………27
3.2 實驗材料………………………………………………………30
3.3 實驗設備………………………………………………………31
3.4 分析方法………………………………………………………33
第四章 結果與討論……………………………………………………43
4.1 影響污泥系統調理環境因素之分析…………………………43
4.2 冷藏時間及冷藏溫度對污泥調理之影響……………………46
4.2.1 實驗流程………………………………………………46
4.2.2 污泥之基本特性………………………………………48
4.2.3 低溫處理對污泥顆粒界達電位之影響………………50
4.2.4 冷藏時間及溫度對顆粒大小、密度及碎形維度之影響..51
4.2.5 冷藏時間及冷藏溫度對脫水特性之影響……………..53
4.2.5.1冷藏時間及冷藏溫度對過濾係數之影響………53
4.2.5.2冷藏時間及冷藏溫度對SVI之影響……………55
4.2.5.3冷藏時間及冷藏溫度對SRF值之影響…………56
4.2.6 冷藏時間及冷藏溫度對脫水速率之影響……………58
4.2.7 冷藏時間及冷藏溫度對最終泥餅含水率之影響……60
4.2.8 比較不同冷藏溫度下過濾係數及脫水速率之變化…62
4.3 降溫速率對污泥調理之影響…………………………………64
4.3.1 實驗流程………………………………………………64
4.3.2 污泥之基本特性………………………………………66
4.3.3 降溫速率對顆粒大小、密度及碎形維度之影響………66
4.3.4 降溫速率對脫水特性之影響…………………………67
4.3.5 降溫速率對脫水速率之影響…………………………69
4.3.6 降溫速率對最終泥餅含水率之影響………………70
4.4 以低溫配合加入高分子聚合物對污泥調理之影響…………71
4.4.1 實驗流程………………………………………………71
4.4.2 污泥之基本特性………………………………………71
4.4.3 以低溫配合高分子調理對粒徑、有效密度及維度之影響.73
4.4.4 以低溫配合高分子調理對脫水特性之影響………75
4.4.5 以低溫配合高分子調理對脫水速率之影響………78
4.4.6 以低溫配合高分子調理對最終泥餅含水率之影響…79
4.5 不同回溫溫度對污泥調理脫水效率之影響…………………80
4.5.1 實驗流程………………………………………………80
4.5.2 不同回溫溫度對脫水特性之影響……………………82
4.6 以流變分析作污泥調理脫水指標之適用性…………………83
4.6.1 實驗流程………………………………………………83
4.6.2 以剪應力對應剪應變探討污泥調理之最佳加藥量…85
4.6.3 以黏度變化探討污泥調理之最佳加藥量…………87
第五章 結論與建議……………………………………………………95
5.1 結論……………………………………………………………95
5.2 建議……………………………………………………………96
參考文獻……………………………………………………………97

Adachi Y. and Tanaka Y. (1997) Settling Velocity of an Aluminium-Kaolinite Floc. Wat. Res. 31(3), 449-454.
ASCE and AWWA. (1996) Technology Transfer Handbook: Management of Water Treatment Plant Residuals.
Benefield L. D., Judkins J. F. and Weand B. L. (1982) Process Chemistry for Water and Wastewater Treatment, 2nd Ed., Prentice-hall, New Jersey. 191-217.
Benefield L. D. and Randall C. W. (1980) Biological Process Design for Wastewater Treatment, Prentice-hall, New Jersey. 131-151.
Bien J. and Wolny L. (1997) Changes of Some Sewage Sludge Parmeters Prepared with an Ultrasonic Field. Wat. Sci. Tech. 36(11), 101-106.
Burd R. S. (1968) A Study of Sludge Handling and Disposal. Publication WP-20-4, U.S. Department of the Interior, Federal Water Pollution Control Adinistration, Office of Research and Development, Washington, D. C.
Campbell H. W. and Crescuolo P. J. (1989) Control of Polymer Addition for Sludge Conditioning: a Demonstration Study. Wat. Sci. Tech. 21(10/11), 1309-1317.
Chen G. W., Chang, I. L., Hung, W. T. and Lee, D. J. (1996) Effects of Freeze/thaw Treatment on Zone Settling for Waste Activated Sludge. J. Envir. Sci. Health A. 31, 621-632.
Christensen J. R., Sorensen P. B., Christensen G. L. and Hansen J. A. (1993) Mechanisms for Overdosing in Sludge Conditioning. J. Environ. Eng. 19(1), 159-171.
Coackley P. and Allos R. (1962) The Drying Characteristics of Some Sewage Sludge. J. Institute of Sewage Purification. 557-564.
Dentel S. K. (1997) Evaluation and Role of Rheological Properties in Sludge Management. Wat. Sci. Tech. 36, 1-8.
Dentel S. K. and Abu-Orf M. M. (1995) Laboratory and Full-Scale Studies of Liquid Stream Viscosity and Streaming Current for Characterization and Monitoring of Dewaterability. Wat. Res. 29, 2663-2672.
Dentel S. K. and Abu-Orf M. M. (1997) Effect of Mixing on The Rheological Characteristics of Conditioned Sludge:Full-Scale Studies. Wat. Sci. Tech. 36(11), 51-60.
Dick R. I. and Ewing B. B. (1967) The Rheology of Actived Sludge. J. WPCF. 39, 543-560.
Dulin B. E. and Knocke W. R. (1989) The Impact of Incorporated Organic Matter on the Dewatering Characteristics of Aluminum Hydroxide Sludge. J. AWWA. 81, 74-79.
Halde R. (1980) Concentration of Impurities by Progressive Freezing. Wat. Res. 14(6), 575.
Heukelekian H. and Weisberg E. (1956) Bound Water and Sludge Bulking. Sewage and Industrial Wastes. 28, 558-575.
Hiemenz P. C. (1981) Principles of Colloid and Surface Chemistry. 2nd Edition, New York, Marcel Dekker, Inc.
Hu X., Luo Q. and Wang C. (1996) Investigation on the State of Water in the flocculated Filter Cake. Sep. Sci. Technol.. 31, 1877-1887.
Huang C. P., Wu C. C. and Chuang Y. C. (1996) Effect of Polymer Conditioning on the Bound Water Content and Sludge Dewaterability of Alum Sludge. Proceedings of 10th IWSA-ASPAC Regional Conference, Hong Kong, pp. 367-372.
Hung W. T., Chang I. L., Lee D. J. and Hong S. G. (1996) Sludge chemical composition changes under uni-directional freezing. Wat. Sci. Tech. 34, 525-531.
Hunter R. J. (1987) Foundations of Colloid Science. Chap9, Oxford University Press.
Karr P. R. and Keinath T. M. (1978) Influence of Particle Size on Sludge Dewaterability. J. WPCF. 52, 1911-1930.
Katsiris N. and Kouzeli-Katsiri A. (1987) Bound Water Content of Biological Sludges in Relation to Filtration and Dewatering. Wat. Res. 24,1319-1327.
Khan M. Z. A. (1986) Conditioning of Pulp and Paper Sludge Using Direct Slurry Freezing. Proceedings of the 41st Purdue Industrial Waste Conference, West Lafayette, Ind.
Knocke W. R., Hamon J. R. and Dulin B. E. (1987) Effects of Coagulation on Sludge Thickening and Dewatering. J. AWWA. June, 89-98.
Knocke W. R. and Trahern P. (1987) Freeze-thaw conditioning of chemical and biological sludge. Wat. Res. 23, 35-42.
Lawler D.F., Chung Y. T., Huang Y. J. and Hull B.A. (1986) Anaerobic Digestion: Effects on Particle Size and Dewaterability. J. WPCF. 58, 1108-1116.
Lee D. J. (1994) Measurement of Bound Water in Waste Activated Sludges: The Use of Centrifugal Settling Method. J. Chem. Tech. Biotechnol. 61, 139-144.
Lee D. J. and Hsu Y. H. (1994) Fast Freeze/Thaw Process on Excess Activated Sludges: Floc Structure and Sludge Dewaterability. Envir. Sci. Tech. 28, 1444-1449.
Lee D. J. and Lee S. F. (1995) Measurement of Bound Water in Sludge: The Use of Differential Scanning Calorimetry (DSC). J. Chem. Tech. Biotechnol. 62, 359-364.
Logsdon G. S. and Edgerley Jr. E. (1971) Sludge Dewatering by Freezing. J. AWWA. 63, 734-740.
Martel C. J., Affleck R. and Yushak M. (1998) Operational Parameters for Mechanical Freezing of Alum Sludge. Wat. Res. 32(9), 2646-2654.
Matsuda A., Kawasaki K. and Mizukawa Y. (1992) Measurement of Bound Water in Excess Activated Sludges and Effect of Freezing and Thawing Process on it. J. Chem. Eng. J. 25(1 )100-103.
Moudgil B. M. and Shah B. D. (1986) Selection of Flocculants for Solid-Liquid Separation Process. In Advanceds in Solid-Liquid Separation.
Papavasilopoulos E.N. (1997) Viscosity as a Criterion for Optimum Dosing of Polymers in Waterworks Sludge. J. CIWEM. 11, 217-224.
Parker P. J., Collins A. G. and Dempsey J. P. (1998) Effects of freezing Rate, Solids Content, and Curing Time on Freeze/Thaw Conditioning of Water Treatment Residuals. Environ. Sci. Technol. 32, 383-387.
Parker P. J., Collins A. G. and Dempsey J. P. (1998) Alum Residual Floc Interactions With an Advancing Ice/Water Interface. J. Environ. Eng. 124(3), 249-253.
Randall C. W. (1978) Butane is Nearly "Ideal" for Direct Slurry Freezing. Water and Wastes Engineering, 15(3), 43-49.
Randall C. W., Ali Khan M. Z. and Stephens N. T. (1975) Waste Activated Sludge Condirioning by Direct Slurry Freezing. Water Research, 9(10), 917-925.
Robinson J. K. and Knocke W. R. (1992) Use of dilatometric and Drying Techniques for Assessing Sludge Dewatering Characteristics. Wat. Environ. Res. 64, 60-68.
Rush R. J. and Stickney A. R. (1979) Natural freeze-thaw sludge conditioning and dewatering Report EPS 4-WP-79-1, Environment Canada, Ottawa, Ontario, Canada.
Silvares O. M. (1975) The Thermodyanics of Water Transport From Biological Cells During Freezing. Trans. Am. Soc. Mech. Engrs. J. Heat Trnsf. 582-590.
Smith J. K. (1992) The Use of dilatometry to Measure the Characteristics of Water in Sludge. MS Thesis, Department of Civil and Enviromental Engineering, Duke University, Durham NC.
Spinosa L., Santori M. and Loito V. (1989) Rheological Characterization of Sewage Sludge. Recycling von Klarschlamm. 2, 177. Ed. U. Loll. E. F. Verlag, Berlin.
Tambo N. and Watanabe Y. (1979) Physical Characteristics of Flocs-I. the Floc Density. Wat. Res. 13, 409-419.
Tadros T. F. (1985) Rheology of Concentrated Suspensions. Chemistry and Industry, April, pp.210-218.
Uhlman D. R., Chalmers B. and Jackson K. A. (1963) Integration between particles and a solid-liquid interface. J. Appl. Phys. 35(10).
Vesilind P. A. (1988) The capillary suction time as a fundamental instrument for determining the filterability of the sewage sludge. J. WPCF. 60, 215-220.
Vesilind P. A. and Hsu C. C. (1997) Limits of Sludge Dewaterability. Wat. Sci. Tech. 36(11), 87-91.
Vesilind P. A. and Martel C. J. (1990) Freezing of Water and Wastewater Sludges. J. Environ. Eng., ASCE, 116, 854-861.
Vesilind P. A., Wallinmaa S. and Martel C. J. (1991) Freeze-thaw Sludge Conditioning and Double Layer Compression. Can. J. Civ. Eng. 18, 1078-1083.
Wihelm J. H. and Silverblatt C. E. (1976) Freeze Treatment of Alum Sludge. J. AWWA. 68, 312-314.
經濟部工業污染防治技術服務團、財團法人中國技術服務社,"污泥脫水處理",工業污染防治手冊之十四,pp.7-15,民國七十七年。
經濟部工業污染防治技術服務團、財團法人中國技術服務社,"污泥脫水處理",工業污染防治手冊之六十四,pp.138-155,民國八十六年。
呂維明、呂文芳,過濾技術,高立圖書有限公司,民國八十三年。
洪文通、溤文昕、蔡怡杏、李篤中,活性污泥垂直方向冷及徑向冷凍之研究,第二十一屆廢水處理技術研討會論文集,民國八十五年。
張添晉,淨水處理廠廢污處理技術之研究,中華民國自來水協會技術委員會,民國八十六年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔