(3.238.186.43) 您好!臺灣時間:2021/03/01 15:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李尚修
論文名稱:選擇性觸媒還原脫硝法之模廠實驗及其觸媒成本評估
論文名稱(外文):Experimental study of selective catalytic reduction and the cost estimation of catalysts
指導教授:白曛綾
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:83
中文關鍵詞:選擇性觸媒還原脫硝法
相關次數:
  • 被引用被引用:3
  • 點閱點閱:344
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於國內環保意識的提高,及環保法令的日趨嚴格,燃燒後之除硝設備逐漸受到重視,其中以選擇性觸媒還原法(SCR)裝置對NOX去除效率最高。目前SCR技術於國外已相當成熟,最適合國內發展;然而,SCR系統因採用觸媒,使得其初設費用相當高,而觸媒的更換亦提高操作維護費用。
本研究首先於某玻璃工廠進行模廠實驗,在取得本土觸媒之基本操作資料後,藉由Bai and Chwu所發展之SCR二維質傳模式,求取表面反應速率(KS)與吸附常數(KNH3)值,然後利用此二維模式之解析解求得不同操作情況下之NO轉化率,並與實驗值互相驗證。最後選取國內已設置SCR設備之廠家,以本土觸媒之性能表現,重新設計觸媒體積並計算觸媒成本,以比較本土與進口觸媒成本的差異性。實驗結果發現,本土觸媒具有相當好之去除效率。而在模式預測結果與實驗值相較時發現,溫度與空間速度值對於模式預測的準確度有顯著的影響,若使用該觸媒之最佳的操作溫度範圍(300℃至400℃)及較高的空間速度下(約25,000 hr-1以上)之實驗值,來求取表面反應速率(KS)與吸附常數(KNH3),將可以提高模式預測之準確性。
目 錄
中文摘要………………………………………………………i
英文摘要………………………………………………………ii
誌謝………………………………………………………iii
目錄………………………………………………………iv
表目錄………………………………………………………vi
圖目錄………………………………………………………vii
第一章 前言…………………………………………………1
1.1研究緣起……………………………………………1
1.2研究目的……………………………………………3
第二章文獻回顧……………………………………………4
2.1SCR方法簡介……………………………………...4
2.1.1SCR原理…………………………………………...5
2.1.2SCR法所使用之觸媒種類與型式………………...6
2.1.3影響SCR系統去除效率因素……………………..7
第三章研究方法……………………………………………17
3.1實驗方法及設備……………………………………17
3.1.1實驗設備……………………………………………17
3.1.2實驗流程……………………………………………19
3.1.3分析方法……………………………………………20
3.2模式的應用…………………………………………21
3.2.1SCR理論模式……………………………………...21
3.2.2使用模式求取未定參數……………………………24
3.2.3模式驗證……………………………………………25
3.2.4SCR成本評估……………………………………...25
第四章結果與討論…………………………………………33
4.1未定參數之求取……………………………………33
4.1.1求取有效反應速率(KS)…………………………...34
4.1.2求取吸附常數(KNH3)………………………………34
4.2操作影響因子的探討………………………………35
4.2.1進流NO濃度對NO轉化率的影響……………….35
4.2.2NH3/NO進流比對NO轉化率的影響……………..36
4.2.3溫度對NO轉化率的影響…………………………37
4.2.4空間速度對NO轉化率的影響……………………38
4.3敏感度分析………………………………………....39
4.3.1溫度對表面反應速率(KS)及吸附常數(KNH3)…....39
4.3.2空間速度對表面反應速率(KS)及吸附常數(KNH3)的影響……………………………………41
4.4設計觸媒體積………………………………………43
4.4.1觸媒設計總成本……………………………………43
4.4.2煙道氣流量之影響…………………………………44
4.4.3觸媒使用年限之影響………………………………45
第五章結論與建議…………………………………………66
5.1結論…………………………………………………66
5.2建議…………………………………………………68
參考文獻………………………………………………………69
表目錄
表2.1The type and content of different commercialized catalyst…...11
表2.2The advantages and disadvantages of different catalyst geometries…………………………………………………….
11
表2.3Typical operating ranges for a monolithic honeycomb SCR system…………………………………………………………
12
表2.4The applicable range of parameters for a SCR system……….12
表3.1Lists of SCR systems installed in Taiwan''s factories…………27
表4.1Regression results of the adsorption equation and Arrhenius equation at temperature ranges from 250℃ to 400℃………..
46
表4.2Regression results of the adsorption equation and Arrhenius equation at different temperature ranges……………………...
47
表4.3The surface reaction constant (KS) and adsorption constant (KNH3) obtained from the two-dimensional model under different temperature ranges…………………………………..
48
表4.4The surface reaction constant (KS) and adsorption constant (KNH3) obtained from the two-dimensional model using different values of space velocity……………………………..
49
表4.5The comparison of original catalyst with those of new designs………………………………………………………...
50
圖目錄
圖2.1The SCR system………………………………………………13
圖2.2The basic flowcharts of SCR at different applications………..14
圖2.3The horizontal style of SCR and the mode of gas flow……….15
圖2.4The vertical style of SCR and the mode of gas flow………….16
圖3.1Research procedures of this study…………………………….28
圖3.2Schematic of experimental setup used in this study…………..29
圖3.3The variation of inlet and outlet NO concentrations with respect to time………………………………………………...
30
圖3.4The schematic of NH3 sampling system…………….………...31
圖3.5The flowchart of SCR numerical model………………………32
圖4.1The background NO conversion without injecting NH3 at NO inlet concentration of 1027ppm (±6%)………………………
51
圖4.2aVariation of surface rate constant (KS) with respect to temperature(0K)……………………………………………
52
圖4.2bVariation of NH3 adsorption constant (KNH3) with respect to temperature(0K)……………………………………………
53
圖4.3The NO conversion rates at different NO inlet concentrations. The operation conditions were: T=350℃,SV=13550hr-1, NH3/NO=1.0…………………………………………………..
54
圖4.4Comparison of model prediction results with the experimental observations as a function of NH3/NO inlet ratio……………..
55
圖4.5The experimental data of NH3 slip concentration…………….56
圖4.6Comparison of model prediction results with the experimental observations as a function of temperature…………………….
57
圖4.7Comparison of model prediction results with the experimental observations as a function of space velocity (SV)……………
58
圖4.8Sensitivity analysis on the NO conversion for different temperature ranges used for obtaining the undefined variables
59
圖4.9Comparison results of NO conversion using different values of space velocity for obtaining the undefined variables………
60
圖4.10The effect of different ranges of space velocity used for obtaining the undefined variables on the NO conversion…….
61
圖4.11The comparisons of catalyst costs of original design with the new design under the same design values of NO conversion rate…………………………………………………………….
62
圖4.12Design of the SCR reactor volume size and outlet NO concentration under different values of space velocity……….
63
圖4.13Effect of flow rate variation on NO conversion at different values of safety factor multiplication in the catalyst volume…
64
圖4.14The comparisons of catalyst costs per year between original design and the new design under the same design values of NO conversion rate…………………………………………..
65
Bai, H. L. and Chwu, J. W. "Theoretical Analysis of Selective Catalytic Reduction Catalysts", ASCE J. of Environmental Engineering. Vol. 123, No. 5, pp. 431-436(1997).
Bai, H. L. and Chwu, J. W. "Design Model for Selective Catalytic Reduction Process: Solution of Convective Diffusion and NOx Reaction" ASCE J. of Environmental Engineering. Vol. 124, No. 12, pp.1,220-1,226(1998).
Beeckman, J.W. and L.L. Hegedus, "Design of Monolith Catalysts for Power NOx Emission Control", Ind. Eng. Chem. Res., Vol. 30, No.8, pp. 969-978 (1991).
Binder-Begsteiger, I., G., W. Herzog, E. Megla, and M. Tomann-Rosos, "Zur Kinetic der Denox-Reaktion an TiO2/WO3-Waben-Katalysatoren", Chem. Ing. Tech., Vol. 62(1), pp. 60-61 (1990).
Boer, F. P., L. L. Hegedus, T. R. Gouker and K. P. Zak, "Controlling Power Plant NOx Emissions", CHEMTECH, May, pp. 312-319(1990).
Bosch, H. and F. Janssen, "De NOx Catalyst Review", Catal. Today, Vol. 2, pp. 369-532 (1988).
Buzanoski, M.A., and R.T. Yang , "Simple Design of Selective Catalytic R eduction of NO for Power Plant Emission Control", Ind. Eng. Chem. Res., Vol. 29, pp. 2074-2078 (1990).
Cho, S. M., "Properly Apply Selective Catalytic Reduction for NOX Removal", Chem. Eng. Prog. , Jan, pp. 39-45 (1994).
Haber, J., Block, J. H., Delmon, B., "Manual of Methods and Procedures for Catalyst Characterization", International Union of Pure and Applied Chemistry, pp. 1257-1306 (1995).
Hjalmarrson, A.K., "NOx Control Technologies for Coal Combustion", IEACR/24, IEA Coal Reserch, London, pp. 40-53 (1990).
Miyamoto, A., Y. Yamazaki, T. Hattori, M. Inomata and Y. Murakami, "Study on the Pules Reaction Technique ;Part VI :Kinetics of the Reaction of NO with NH3 on a Vanadia Catalyst", J. Catal., Vol. 74, pp. 144-155 (1982).
Shikada, T., K. Fujimoto, H. Tominaga, S. Kanekoand , and Y. Kubo, "Reduction of Nitric Oxide with Vanadium Oxide Catalysts Supported on Homogeneously Precipitated Silica-Titania", Ind. Eng. Chem. Prod. Res. Dev., Vol. 20, pp. 91-95 (1981).
Stringro, J. P. and G. Gut, "Kinetics of the Selective Catalyst Reduction of Nitrogen Oxides with Ammonia over an Oxidic Catalyst", Chimia, Vol. 35, pp. 231-236 (1981).
Tronconi, E., A. S.Elmi,and P. Forzatti, "A Complete Model of SCR Monolith Reactions for the Analysis of Interaction NOx Reduction and SOx Oxidation Reaction ",Chem. Eng. Sci., Vol. 49, NO. 24A, pp. 4277-4287 (1994).
Tuenter, G., W. F. V. Leeuwen and L. J. M. Snepvangers, "Kinetics and Mechanism of the NOX Reduction with NH3 on V2O5-WO3-TiO2 Catalyst", Ind. Eng. Chem. Prod. Res. Dev., Vol. 25, pp. 633-636 (1986).
1990 Clean Air Act, West Publishing Co., U.S.A., (1991).
行政院環保署空保處,「Industrial Pollution in Taiwan」,民國87年2月。
賴正昕,劉國棟,黃自立,"選擇性觸媒還原法排煙脫硝系統控制實務",工業污染防治,第57期,pp.110-126 (1996)。
行政院環保署,「氮氧化物減量技術--活性碳觸媒選擇性還原法及其適用污染源排放狀況調查」,(1997)。
徐挺生,吳森榮,溫增文,"選擇性觸媒除硝技術研究",第十二屆空氣污染技術控制研討會,pp. 241-249(1995)。
翁瑞裕,"選擇性觸媒還原(SCR)脫硝法",工業污染防治,第57期,pp.140-155 (1996).
儲中文,「以選擇性觸媒還原法去除氮氧化物之模式探討」,碩士論文,國立交通大學,(1996)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔