(3.235.108.188) 您好!臺灣時間:2021/02/25 08:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林育群
研究生(外文):Yu-Chun Lin
論文名稱:應用模糊類神經網路於六軸平台運動分析與控制
論文名稱(外文):A Neural Fuzzy Inference Network for the Motion Analysis and Control of Stewart Platform
指導教授:林 進 燈
指導教授(外文):Chin-Teng Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:71
中文關鍵詞:順向運動學運算模糊控制器動力學分析奇異點路徑規避法
相關次數:
  • 被引用被引用:23
  • 點閱點閱:170
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是針對我們現有實驗用的六軸平台做其運動分析與控制,首先我們推導平台的逆向運動學,並利用Newton-Raphson數值法與類神經網路學習的方式來處理平台順向運動學運算的問題。使用Newton數值法於順向運動學運算雖然可以得到很好的精度,但其每次運算所需的疊代次數為數次至數百次,也就是說我們無法得知其每次運算所需的時間為何,而運用類神經網路學習的方式則可以有效降低計算時間且所需的運算時間固定。在類神經網路學習方面,我們分別使用BPN和實驗室發展的SONFIN來學習平台順向運動學的運算,由兩者的模擬結果,我們可以觀察出應用SONFIN於順向運動學運算的誤差量較小,即其偍供較佳的運算精度。
在完成六軸平台的運動學分析,我們即可對平台做實際控制,除了現有的PI型硬體位置控制器外,我們設計了一個PD-like型的模糊位置控制器,以提供較佳的運動響應與位置精度。接著我們分析六軸平台的動力學,以計算出在不同的平台位置姿態下,各油壓致動器所需提供的力為何,以期能對於六軸平台的模型建構與控制器設計有所幫助。另外,針對平台機構可能遇到的奇異點問題,我們是使用路徑規劃的方式來迴避運動中的奇異曲面。在本論文中共提出三種奇異點路徑規避法,分別為最佳化奇異點規避法、曲面梯度奇異點規避法與近似最佳化即時奇異點規避法。使用最佳化規避法雖然擁有較高的位置精度,但其運算時間較長。而曲面梯度規避法的演算架構簡單、計算量小,但其位置精度則較差。而我們提出的近似最佳化即時奇異點規避法即是結合前兩種方法的優點,其動作原理為利用SONFIN學習最佳化規避法的搜尋方向,再以曲面梯度規避法的演算架構來尋找適當的取代路徑。
The aim of our research is the motion analysis and control of a six-degree experimental motion platform. At first, we analyze the inverse kinematics of a six-degree motion platform. Then we solve the forward kinematics problem by the Newton-Raphson numerical method and the neural networks. Adopting the Newton-Raphson numerical method for the forward kinematics problem can achieve good accuracy, but it needs several to hundred numbers of iterations in every calculation. The use of neural networks for the forward kinematics problem can solve this problem, because it takes less and constant time in every calculation. We adopt the BPN and SONFIN for the forward kinematics problem and compare their simulation results. We can observe that SONFIN offers better accuracy than BPN.
After finishing the kinematics analysis of the six-degree motion platform, we design controllers to control it practically. In addition to the original PI-type hardware position controller, we design a PD-like type fuzzy position controller to improve the motion response and position accuracy. We also analyze the dynamics of platform to compute the force of actuators needed to offer in different platform motion and pose. We hope this analysis can help us on the modeling of a six-degree platform and the design of controller. Finally, we adopt the path planning method for avoiding the manifold of singularity during the motion of platform. We propose three kinds of singularity-free path planning methods in this thesis. They are the optimal, gradient and approximate optimal singularity-free path planning methods. Although the optimal method can offer better position accuracy, it takes longer computing time than the gradient one. The approximate optimal method adopts and fuses the spirit of the optimal and gradient method. It uses SONFIN to learn the search direction of optimal method first, then searches the alternate path based on the gradient method.
中文摘要 i
英文摘要 ii
目錄 iii
圖列 v
表列 vii
第一章 簡介與文獻回顧 1
1.1 六軸平台( Stewart Platform )簡介 1
1.2 實驗設備系統介紹 2
第二章 具自我建構能力之類神經模糊推論網路 4
2.1 SONFIN的架構( structure ) 4
2.2 SONFIN的學習演算法( learning algorithm ) 7
2.2.1 輸入、輸出空間的分割 8
2.2.2 模糊法則的建構 10
2.2.3 推論部分架構的確認 11
2.2.4 網路參數的確認 12
第三章 六軸平台運動學分析 14
3.1 空間座標定義 14
3.2 逆向運動學推導( Inverse Kinematics ) 15
3.3 順向運動學探討( Forward Kinematics ) 16
3.3.1 數值方法( Newton-Raphson ) 17
3.3.2 類神經綱路學習法( Neural Network ) 19
3.4 模擬結果( Simulation Results ) 21
第四章 控制系統架構 30
4.1 控制系統架構 30
4.2 軌跡規劃( Trajectory Planning ) 31
4.3 模糊控制法( Fuzzy Control ) 34
4.3.1 PD-like模糊控制器 35
4.4 實驗結果( Experiment Results ) 37
第五章 六軸平台動力學分析 41
5.1 致動器的慣性力分析 41
5.2 六軸平台的動力學分析 44
5.3 模擬結果( Simulation Results ) .47
第六章 路徑中奇異點規避法 49
6.1 六軸平台奇異點( Singularity )的問題 49
6.2奇異點路徑規避法( Singularity-Free Path Planning ) 51
6.2.1 最佳化( Optimal )奇異點規避法 53
6.2.2 曲面梯度( Gradient )奇異點規避法 54
6.2.3 近似最佳化即時奇異點規避法 56
6.3 模擬結果( Simulation Results ) 57
第七章 結論與展望 68
參考文獻 69
【1】D. Stewart, "A Platform with Six Degrees of Freedom", Proceedings of the Institution of Mechanical Engineers, Vol. 180, Part 1, No. 5, pp. 371-386,1965-1966.
【2】D. C. Yang and T. W. Lee, "Feasibility Study of a Platform Type of Robotic Manipulators from a Kinematic Viewpoint," Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 106, pp. 191-198, 1984.
【3】E. F. Fichter, "A Stewart Platform-Based Manipulator: General Theory and Practical Construction", Int. Journal of Robotics Research, pp. 157-182, Summer 1986.
【4】W. Q. D. Do and D. C. H. Yang, "Inverse Dynamics Analysis and Simulation of a Platform Type of Robot", Journal of Robotics Systems, Vol. 5, pp. 209-229, 1988.
【5】P. Nanua and K. J. Waldorm, "Direct Kinematics Solution of a Stewart Platform", Proc. IEEE Int. Conf. on Robotics and Automation, Vol. 1, pp. 431-437, 1989.
【6】S.M. Song and C.D. Zhang, "Forward Kinematics of a Class of Parallel (Stewart) Platforms with Closed-Form Solutions", Proc. Of the 1991 IEEE International Conference on Robotics and Automation, Vol. 2,pp. 2676-2681, 1991.
【7】C. C. Nguyen, S. S. Antrazi, Z.L. Zhou and C. E. Campbell, "Experimental Study of Motion Control and Trajectory Planning for a Stewart Platform Robot Manipulator", Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, California, April, pp. 1873-1878, 1991.
【8】Z. Geng and L. Haynes, "Neural Network Solution for the Forward Kinematics Problem of a Stewart Platform", Proc. of the 1991 IEEE Int. Conf. on Robotics and Automation, Sacramento, California, pp. 2650-2655, April, 1991.
【9】Z. Geng, "On the Dynamic Model and Kinematics Analysis of a Class of Stewart Platform", J. Robotics and Automation System, Vol.9, 1992.
【10】H. Pang, "Kinematics and Dynamics of a Parallel Manipulator with Woven Joints", Vibration and Dynamics of Robotics and Multibody structures, ASME, pp. 49-56, 1993.
【11】P.a. Drexel, A.J. Taylor, "Six Degree-of-freedom Hydraulic, One Person Motion Simulator." Proceedings IEEE International Conference on Robotics and Automation, pt3, pp. 2437-2443,1994.
【12】C. F. Juang and C. T. Lin, "An on-line Self-cOnstructing Neural Fuzzy Inference Network for System Modeling," IEEE Trans. Fuzzy System, Vol. 6, No. 1, February 1998.
【13】C. T. Lin and C. S. G. Lee, "Neural-Network-based Fuzzy Logic Control and Decision System," IEEE Tran. Comput. Vol. 40, No. 12, 1991, pp. 1320-1336.
【14】C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neural-Fuzzy Synergism to Intelligent Systems (with disk), Englewood Cliffs, NJ: Prentic-Hall, May 1996.
【15】T. Talagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst. Man, Cybern. Vol. 15, No. 1, Jan 1985, pp. 116-132.
【16】C. C. Nguyen, Z. L. Zhou and S. S. Antrazi, "Efficient Computation of Forward Kinematics and Jacobian Matrix of a Stewart Platform-Based Manipulator," IEEE 1991,pp. 869-874.
【17】Kai Liu, John M. Fitzgerald, and Frank L. Lewis, "Kinematic Analysis of a Stewart Platform Manipulator," IEEE Transactions on Industrial Electronics. Vol. 40, No. 2, APRIL 1993.
【18】J. P. Merlet, "Direct Kinematics of Parallel Manipulators," IEEE Transactions on Robotics and Automation. Vol. 9, No. 6, DECEMBER 1993.
【19】Xiaolun Shi and R. G. Fenton, "A Complete and General Solution to the Forward Kinematics Problem of Platform-Type Robotic Manipulators," IEEE 1994.
【20】BHASKAR DASGUPTA and T. S. MRUTHYUNJAYA, "A Constructive Predictor-Corrector Algorithm for the Direct Position Kinematics Problem for a General 6-6 Stewart Platform," Mech. Mach. Theory, Vol. 31, No. 6, pp. 799-811, 1996.
【21】Jun Yang and Z. Jason Geng, "Closed Form Forward Kinematics Solution to a Class of Hexapod Robots," IEEE. Transactions on Robotics and Automation. Vol. 14, No.3, JUNE 1998.
【22】Ji, Z., "Study of the Effect of Leg Inertia in Stewart Platforms," in Proceedings of the IEEE International Conference of Robotics and Automation, Vol. 1, 1993, pp.121-126.
【23】BHASKAR DASGUPTA and T. S. MRUTHYUNJAYA, "A Newton-Euler Formulation for the Inverse Dynamics of the Stewart Platform Manipulator," Mech. Mach. Theory, Vol. 33, pp. 1135-1152, 1998.
【24】C. Wen, "Modeling and Control of a Hydraulic Stewart Platform," Journal of Control Systems and Technology, Vol. 6, No. 3, pp. 177-192, 1998.
【25】Gosselin, C. and Angeles, J., "Singularity analysis of closed-loop kinematic chains," IEEE Transactions on Robotics and Automation, Vol. 6, No. 3, JUNE 1990.
【26】BHASKAR DASGUPTA and T. S. MRUTHYUNJAYA, "Singularity-free Path Planning for the Stewart Platform Manipulator," Mech. Mach. Theory Vol. 33, No. 6, pp. 711-725, 1998.
【27】S. BHATTACHARYA, H. HATWAL and A. GHOSH, "Comparison of an Exact and an Approximate Method of Singularity Avoidance in Platform Type Parallel Manipulators," Mech. Mach. Theory Vol. 33, No. 7, pp. 956-974, 1998.
【28】郭俊良、王培士編譯 "機器人的機構與控制" 全華科技圖書,1988
【29】王進德、蕭大全編著 "類神經網路與模糊控制理論入門" 全華科技圖書,1994
【30】張鴻祥 "虛擬實境之六軸動感平台控制與系統整合" 國立交通大學電機與控制工程學系 碩士論文,1997
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔