跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 15:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱佳禾
研究生(外文):Jar-Har Chiou
論文名稱:利用學習機制對機器人運動的速度軌跡做指令簡化與調變
論文名稱(外文):Robot Motion Command Simplification and Scaling for Velocity Tracking Using Learning Mechanisms
指導教授:楊谷洋楊谷洋引用關係
指導教授(外文):Kuu-Young Young
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:60
中文關鍵詞:三角波法方波法誤差邊界相似性連續增加速度軌跡
外文關鍵詞:The triangular-wave methodThe rectangular-wave methodError boundsimilaritycontinous-increasingvelocity trajectory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
一個稱為方波的學習策略以運動的精確度來換取簡化的指令且擷取了運動軌跡的相似性,已經在先前被提出。然而,我們考慮到的除了運動的軌跡還有運動的速度需要被學會。我們延續了這個工作而提出了另一個方法稱為三角波法來實現速度的追蹤與指令的簡化。當原來複雜的指令在容許精確度的運動下,被簡化成簡單的形式且用簡單結構及較少記憶空間的的學習機制來儲存與操作。此外,這個學習機制也可以從調整指令的大小來改變其速度,所以簡化的指令提供了一組具有不同距離及速度的運動,而毋須重算系統的動力學。以網求揮拍動作為主的實驗報告證實了我們所提出的學習機制履行了精確度與簡化指令的交換與速度的追蹤。

A learning scheme, called rectangular-wave method, has been proposed previously.
It trades motion accuracy for motion command simplification and captures the similarity
of position trajectory, (eg., human signature). However, we consider not only the position but
also the velocity trajectories should be learnt.
As a continuing work, we propose another method to implement motion command
simplification and velocity tracking. We refer it as the triangular-wave method.
When the original complex motion commands capable of accurate motion tracking are simplified into simple forms,
the simplified motion commands can then be stored and manipulated by using
learning mechanisms with simple structures and scanty memory resources, and they can be
fast and smoothly executed. In addition, this learning scheme can also perform motion
command scaling in speed, so that simplified motion commands be provided for a number
of similar motions of different movement distances and velocities without system dynamics re-calculation.
Experiments based on tennis swing motions are reported that demonstrate the
effectiveness of the proposed learning scheme in implementing these accuracy-simplification and velocity tracking.

Chinese Abstract............................................................................................................................................i
English Abstract.............................................................................................................................................ii
Acknowledgements.......................................................................................................................................iii
Contents.........................................................................................................................................................iv
List of Figures................................................................................................................................................vi
1 Introduction..................................................................................................................................................1
2 Biological Backgrounds
2.1 Human Motor Control..............................................................................................................................3
2.2Eguilibrium-Point Hypothesis....................................................................................................................5
2.3Speed-Sensitive Movement Strategy..........................................................................................................6
2.4Speed-Insensitive Movement Strategy........................................................................................................7
2.5Speed-Insensitive Movement Strategy as a Default....................................................................................8
3 Learning Scheme for Motion Command Simplification and Scaling...........................................................9
3.1Motion Command Simplification...............................................................................................................9
3.1.1 Rectangular-Wave Method...................................................................................................................10
3.1.2 Triangular-wave Method.......................................................................................................................15
3.2 Motion Command Scaling........................................................................................................................20
3.2.1 Scaling in Size........................................................................................................................................21
3.2.2 Scaling in Speed.....................................................................................................................................24
4. Experiment...................................................................................................................................................27
.
4.1 Result Discriptions....................................................................................................................................30
4.2 Discussions................................................................................................................................................36
4.2.1 Performance Evaluation of Using the Triangular-Wave and the Rectangular-wave Methods.................36
4.2.2 Scaling in Size and Speed........................................................................................................................38
..
5 Conclusion
5.1 Future Work...............................................................................................................................................48
A Learning Scheme for Accurate Motion Tracking..........................................................................................49
A.1 Trajectory Mapping....................................................................................................................................50
A.2 FNN Implementation..................................................................................................................................52
A.2.1 Fussy Neural Network.............................................................................................................................53
Bibliography.......................................................................................................................................................58

[1] H.R. Berenji and P. Khedkar, ``Learning and Tuning Fuzzy Logic
Controllers Through Reinforcements,IEEE Trans. on Neural Networks,Vol. 3(5), pp. 724-740, 1992.
[2] J.J. Craig, Introduction to Robotics, Addison-Wesley, 1989.
[3] P.M. Fitts, ``The Information Capacity of the Human Motor Program in
Controlling the Amplitude of Movement,'' J. Experimental Psychology, Vol. 47,pp. 381-394, 1954.
[4]T. Flash, ``The Control of Hand Equilibrium trajectories in
Multi-Joint Arm Movements,'' Vol. 57, pp. 257-274, 1987.
[5] D.M. Corcos, G.L. Gottlieb , and G.C. Agarwal , "Organizing Principles for Single
Joint Movements-(1) Speed Insensitive Strategy ," vol 62,no2,pp.341-357, Auguest 1989.
[6] G.L. Gottlieb ,D.M. Corcos, and G.C. Agarwal , "Organizing Principles for Single
Joint Movements-(2) Speed Sensitive Strategy ," vol 62,no2, pp.358-370, Auguest 1989
[7] G.L. Gottlieb ,D.M. Corcos, G.C. Agarwal ,and M.L. Latash, "Organizing Principles for Single
Joint Movements-(3) Speed Insensitive Strategy as a Default ," {Journal of Neurophysiology.} vol 63,no3, pp.625-636 March 1990.
[8] Z. Hasan, ``Optimal Movement Trajectories and Joint Stiffness
in Unperturbed, Initially Loaded Movements," {\sl J. Biological Cybernetics,} Vol.53, pp. 373-382, 1986.
[9] J.C. Houk and W.Z. Rymer, ``Neural Control of Muscle Length and Tension,'' sl Handbook of Physiology:
The Nervous System II, Bethesda, MD, American Physiol. Soc.,Sec. 1, Vol. II, Chap. 8, pp. 257-323, 1981.
[10]M. Kawato, K. Furukawa, and R. Suzuki, ``A Hierarchical Neural-Network
Model for Control and Learning of Voluntary Movement,'' Biological Vol. 57, pp. 169-185, 1987.
[11] S.L. Lehman, ``Input Identification Depends on Model Complexity,'' in Multiple Muscle Systems, Winters and Woo, Ed., Springer-Verlag, New York, pp. 94-100, 1990.
[12] S.F. Liu, "Robot Motion Command Simplification and Scaling Using Learning Mechanisms, " S.M. thesis, Dept. Cont. Eng.,
Chiao-Tung University, Taiwan, R.O.C. 1997.
[13] A. Polit and E. Bizzi, ``Characteristics of Motor Programs Underlying
Arm Movements in Monkeys,'' J. Neurophysiology, Vol. 42(1), pp. 183-194, 1979.
[14]R. Plamondon and F. Maarse, ``An Evaluation of Motor Models of Handwriting,'' IEEE Trans. Systems, Man, and Cybernetics, Vol. 19(5), pp.1060-1072, 1989.
[15]T.D. Sanger, ``Neural Network Learning Control of Robot Manipulators Using Gradually Increasing Task Difficulty,''
IEEE Trans. Robotics and Automation,Vol. 10(3), pp. 323-333, 1994.
[16] R.A. Schmidt, Motor Control and Learning: A Behavioral Emphasis,Second Edition, Human Kinetics Publishers, Champaign, Illinois, 1988.
[17] T. Shibata and T. Fukuda, ``Hierarchical Intelligent Control for Robotic Motion,'' IEEE Trans. Neural Network, Vol. 5(5), pp. 823-832, 1994.
[18] M. Takegaki and S. Arimoto, ``A New Feedback Method for Dynamic Control of Manipulators," ASME J. Dynamic Systems, Measurement,and Control, Vol. 103(2), pp. 119-125, 1981.
[19]K.Y. Young and J.K. Wang, ``Similarity Analysis for Robot Motions Using and FNN Learning Algorithm,'' IEEE Conf. on Decision and Control, pp. 2523-2528, 1997.
[20] C.H. Wu, K.Y. Young, K.S. Hwang, and S. Lehman, ``Voluntary Movements for Robotic Control,'' IEEE Control Systems Magazine, Vol. 12(1), pp. 8-14, 1992.
[21] R.R. Yager, ``An Alternative Procedure for the Calculation of Fuzzy Logic Controller Values," J. Jap. Soc. Fuzzy Technol. (SOFT), Vol.3(4), pp. 736-746, 1991.
[22] B.H. Yang and H. Asada, ``Progressive Learning and Its Application to Robot Impedance Learning,'' IEEE Trans. on Neural Networks, Vol. 7(4), pp. 941-952,1996.
[23] K.Y. Young and C.C. Fan, ``An Approach to Simplify the Learning Space for Robot Learning Control,'' Fuzzy Sets and Systems, Vol. 95(1), pp. 23-38, 1998.
[24] J.M. Hollerbach, ``Dynamic Scaling of Manipulator Trajectories,'' ASME J. Dynamic Systems, Measurement, and Control,
Vol. 106, pp. 102-106, 1984.
[25] K.Y. Young, J.F. Lee, and H.J. Jou, ``Robot Learning Schemes That Trade Motion Accuracy for Command Simplification,'' accepted by Fuzzy Sets and systems.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 鄭端耀,『國際關係「新制度主義理論」之評析』,《問題與研究》 第36卷 12期 民國86年12月,頁1─22。
2. 陳鴻瑜,『南海石油資源開發與政治衝突』,《東南亞季刊》 第1卷 第3期 1996年7月,頁19─42。
3. 劉必榮,『後冷戰時期東南亞政治秩序』,《東吳政治學報》 第4期 民國84年1月,頁115─133。
4. 陳欣之,『東協諸國對中國威脅論的看法與回應』,《問題與研究》 第35卷 第11期 民國85年11月,頁15─33。
5. 郭承天,『單邊主義、區域主義與多邊主義』,《美歐季刊》 第12卷 第1期,頁1─25。
6. 羅致政,『美國戰略性模糊政策對兩岸互動的影響』,《東吳政治學報》 第6期 民國85年9月,頁176─202。
7. 莫大華,『後冷戰時期東協的軍備競賽與區域安全』,《問題與研究》 第35卷 第3期 民國85年3月,頁51─64。
8. 張雅君,『中共在朝鮮半島核武危機中的影響力』,《中國大陸研究》 第37卷 第8期 民國83年8月,頁41─52。
9. 馬仲可,『北韓退出防止核武器擴散條約和朝鮮半島的核問題』,《問題與研究》 第32卷 第6期 民國82年6月,頁40─51。
10. 周煦,『全球情勢及其對兩岸關係影響』,《問題與研究》 第35卷 第10期 民國85年10月,頁1─14。
11. 袁易,『多邊主義與安全困境下之合作:國際關係理論與美中關係』,《問題與研究》 第35卷 第6期 民國85年6月,頁1─17。
12. 周世雄,『論當前歐亞安全體系之建構:多極體系下之運作模式』,《問題與研究》 第31卷 第4期 民國81年4月,頁57─74。
13. 金惠珍,『亞太區域多邊安全合作的發展與美國的角色』,《美歐月刊》 第11卷 第9期 民國85年5月,頁39─49。
14. 林正義,『亞太安全保障的新體系』,《問題與研究》 第35卷 第12期 民國85年12月,頁1─18。
15. 吳祖田,『東協多邊會議發展之取向』,《問題與研究》 第33卷 第11期 民國83年11月,頁71─86。