(3.235.108.188) 您好!臺灣時間:2021/02/26 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊永輝
研究生(外文):Yung-Hui Chuang
論文名稱:近場光學顯微術及其應用之研究
論文名稱(外文):Near-field Scanning Optical Microscopy and Its Applications
指導教授:潘犀靈
指導教授(外文):Ci-Ling Pan
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1998
畢業學年度:87
語文別:英文
論文頁數:106
中文關鍵詞:近場光學顯微術探針音叉剪力回饋
外文關鍵詞:NSOMprobeforkshear-force feedback
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,將以如何建立近場光學顯微鏡系統及其應用為主要的研究重點,對於近場光學顯微鏡系統部份,將注重於探針的製造,探針與樣品相對距離之控制,系統校正,及系統操作o
關於探針的製造,我們提出二種新的製作探針方法,這二種方法皆用標準的通訊光纖為材料,做成的探針有二個斜角的形狀(two tapered shape),因此探針具有高光穿透率(約為10-4),而其空間解析能力約為250奈米o
關於探針與樣品相對距離之控制,本實驗室提出一種新穎的非光電式技術 我們將探針膠封在音叉的一支腳上,以切斷的弦波訊號(gated sinusoidal signal)驅動此音叉,配合分時多工技巧(time multiplexing technique),使得探針-樣品相對距離能夠控制o
我們自製的近場光學顯微鏡系統,具有50微米的橫向掃描範圍,及10微米縱向位移量,三軸皆用光干涉儀校正之,系統的操作程式建立於DOS作業系統上,以拉下視窗方式做為人機介面o
關於應用的部分,我們用上述系統研究: (1) 2微米多苯乙烯球(polystyrene sphere)的光學特性,(2)光從單模光纖輸出時,由進近場到遠場傳播的行為,以及(3)垂直面射型半導體雷射的橫模分佈o
Two chemical etching techniques have been developed for fabricating scanning near-field optical microscopy (SNOM) probes. These probes have two tapered regions that can be reproducibly constructed with a wide range of cone angles. Our methods can be applied to commercial silica glass fibers. The demonstrated in-plane resolution was estimated to be about 250 nm which is mainly limited by the diameter of the metal-coated tip. The transmission efficiency is better than 10-4.
We propose and demonstrate a novel non-optical technique for regulation of tip-sample distance in a near-field scanning optical microscope (NSOM). The fiber tip for the NSOM is attached to one prong of a quartz tuning fork. The fork is dithered with a gated sinusoidal signal. The vibration of the freely oscillating fiber tip, which manifests as the induced piezoelectric voltage on the fork electrodes, is monitored during the half-period of the gated sinusoid for which the fork is not driven. The time-multiplexing scheme thus allows the tuning fork to serve as a dither and a sensor with high Q-factor simultaneously. The gating technique could also potentially allow the SNOM be used for the investigation of surface relaxation dynamics with high spatial resolution and sub-millisecond time resolution.
We design and calibrate the tube scanner of our home-made NSOM with the lateral deflection about 50mm (in x, y direction), and the longitudinal displacement (in z direction ) is about 10mm. The control program of our NSOM system was developed successfully. This program is based on DOS system.
In order to characterize the image-taking capability of our NSOM, we acquire near-field optical images of a compact mono-layer of polystyrene spheres with a diameter of 2 mm as example. We have also investigated the characteristics of some optical components by using NSOM, such as single-mode optical fiber, and vertical-cavity surface-emitting laser diode (VCSEL).
Cover
Abstracts
Acknowledgement
Contents
Chapter 1: Introduction
References
Chapter 2: Tip Fabrication
Section 2-1 Theoretic Prediction
Section 2-2 Metal Coating
Siction 2-3 Tip Fabrication
Section 2-4 Fabrication methods of two tapered tip in our laboratory
Section 2-5 Alternative Probes
References
Chapter 3: Feedback Control
Section 3-1 Equation of Motion
Section 3-2 Previous Work
Section 3-3 A new non-optical feedbacck method
References
Chapter 4 : NSOM System
Section 4-1 Piezoelectric scanner
Section 4-2 Calibration
Section 4-3 Transient response
Section 4-4 Computer interface
References
Chapter 5: Applications
Section 5-1 Latex Sphere
Section 5-2 vertical-cavity surface-emitting lasers(VCSEL)
Section 5-3 : Beam Quality Factor M
References
Chapter 6: Summary and Outlook
References
References
1. Warren J. Smith ,"Modern Optical Engineering",1984
2. M. A. Paesler, and P.J. Moyer, "Near-Field Optics",1996
3. M Born ,E. Wolf , "Principle of Optics",1975
4. J.W. Goodman, "Introduction to Fourier Optics"
5. R. E. Lee, "Scanning Electron Microscopy and X-ray Microanalysis"
6. Tien T. Tsong ,"Atomic-Probe Field Ion Microscopy "
7. T. Wilson ," Confocal Microscopy"
8. G. Binning, H. Rohrere,C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57-61(1982)
9. G.Binning, C. F. Quate, and C. Gerber, Phys. Rev. Lett,56.930(1986)
10. E.H. Synge, Philosphical Magazine,6, 356(1928)
E.H. Synge, Philosophical Magazine, 13, 297(1932)
11.E.A.Ash and G. Nicholls, Nature, 237, 510(1972)
12.D.W.Pohl, W. Denk, and M. Lanz, Apply. Phys. Lett. 44. 651(1984)
13.A.Lewis, M. Isaacson, and A. Muray, Ultramicroscopy, 13, 27(1984)
14.E.Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 51, 2088(1987)
15.E.Betzig, J.K. Trautman, and et al, Science. 251, 1468(1991)
16.H.HeinZelmann, D.W. Pohl, Appl. Phys. A, 59, 89(1994)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔