(3.238.186.43) 您好!臺灣時間:2021/03/01 09:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉醇鎧
研究生(外文):Chun-Kai Liu
論文名稱:靜電式微振鏡元件製作之探討
論文名稱(外文):Study on electrostatic vibrational micromirror
指導教授:謝正雄謝正雄引用關係許根玉江國寧
指導教授(外文):Jin-Shown ShieKen-Yuh HsuKuoning Chiang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:67
中文關鍵詞:微振鏡異方蝕刻浮板靜電式(111)
外文關鍵詞:micromirroranisotropic etchingmembraneelectrostatic(111)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨在探討靜電式微振鏡元件之製作。運用特殊之(111)正向異方蝕刻矽微加工技術,製作出微間距浮板結構。浮板的組成是以富矽氮化矽為主要結構,於其表面加以一金屬電極層。當於金屬電極與矽基板間加一電位差,浮板因受到靜電力作用而產生機械式的形變,如此即可達到元件振動之目的。本研究中元件的工作模式隨浮板形狀與金屬電極設計不同而異,大致可區分為兩種:一為平移式微振鏡元件,一為扭轉式微振鏡元件。實際完成之元件前者量測的結果,加以100伏特的電壓,垂直平移約1.9微米。後者加以相同電壓,則元件扭轉角度約 ±2度,並量得元件之第一共振頻率在16.5仟赫茲。最後對於製程上所遇到的問題及改進的方法加以探討分析。

In this thesis, we study on the fabrication of an electrostatic vibrational micromirror. Based on Si (111) front-side anisotropic etching technique of micromachining, we can fabricate a floating membrane of shallow gap. The membrane consists of the major structural layer of silicon rich nitride and the electrode layer of metals. When a potential difference is applied to the metal-electrode and the substrate, mechanical deformation such as displacement and tilt of the membrane results from the creating of an electrostatic force, and then the device vibrates. According to the difference of the shapes of membrane and metal-electrode, we can divide the fabricated devices into two operating modes, vertically vibrational micromirror and torsionally vibrational micromirror. In optical measurement, the former has a 1.9μm vertical displacement as a 100Volt voltage is applied. The latter has a tilt of either +2 degrees or —2 degrees as the same voltage is applied, and we obtain its first resonance frequency at about 16.5KHz. At last, we discuss what problems we experience and how to improve in fabrication process.

第一章 緒論…………………………………………1
第二章 靜電式微振鏡元件原理……………………3
2.1 平移式微振鏡元件工作原理……………………3
2.2 扭轉式微振鏡元件工作原理……………………7
第三章 元件結構與製程……………………………14
3.1 矽微加工技術……………………………………14
3.1.1 異方蝕刻技術…………………………………14
3.1.2 (111)晶面之異方蝕刻技術……………………16
3.2 元件結構…………………………………………17
3.3 元件之製作………………………………………17
3.3.1 元件最初之製程設計…………………………17
3.3.2 製程上所遇到的問題與改進的方法…………18
3.3.3 元件經過改良後之製程………………………19
3.3.4 浮板吸附問題…………………………………20
第四章 實驗結果與討論……………………………36
4.1 元件浮板蝕刻情形之探討………………………36
4.2 元件製作結果……………………………………37
4.3 光學上的量測結果………………………………39
4.3.1 平移式微振鏡元件的量測……………………39
4.3.2 扭轉式微振鏡元件的量測……………………40
第五章 結論…………………………………………57
參考文獻………………………………………………59

[1] S. M. Sze, Semiconductor Sensors, John Wiley and Sons Inc., 1994.
[2] S. M. Sze, Physics of Semiconductor Devices, John Wiley and Sons Inc., 1981.
[3] 周正三, 熱導型壓力微感測器, 國立交通大學光電工程研究所博士論文, 1997.
[4] 翁炳國, 矽之微細加工技術及應用, 國立交通大學光電工程研究所博士論文, 1992.
[5] H. Baltes, CMOS micro electro mechanical systems, Sensors and Materials, Vol. 9, No. 6, pp. 331-346, 1997.
[6] R. T. Howe, Surface micromachining for microsensors and micro-actuators, J. Vac. Sci. Technol. B, No. 6, pp. 1809-1813,1988.
[7] S. S. Lee, L. Y. Lin, M. C. Wu, Surface-micromachined free-space fibre-optic switches, Electronics Letters, Vol. 31, No. 17, pp. 1481-1482, 1995.
[8] K. E. Petersen, Silicon as a mechanical material, Proceedings of the IEEE, Vol. 70, pp.420-456, 1982.
[9] H. Seidel, The mechanisam of anisotropic silicon etching and its relevance for micromachining, Transducers’87, Rec. of the 4th Int. Conf. on Solid-State Sensors and Actuators, pp. 120-125, 1987.
[10] D. B. Lee, Anisotropic etching of silicon, J. Appl. Phys., Vol. 40, No.11, pp. 4569-4574, Oct. 1969.
[11] J. Buhler, J. Funk, et al., Electrostatic aluminum micromirrors using double-pass metallization, J. Microelectromech. Syst., Vol. 6, No. 2, pp. 126-135, Jun. 1997.
[12] D. W. Monk, R. O. Gale, The digital micromirror device for projection display, Microelectronic Engineering, Vol. 27, pp. 489-493, 1995.
[13] O. Tabata, K. Shimaoka, R. Asahi, S. Sugiyama, Micromachined sensors using polysilicon sacrificial layer etching technology, Sensors and Materials, Vol. 8, No. 1, pp. 57-67, 1996.
[14] Y. W. Kim, M. G. Allen, Single- and Multi-layer surface-micromachined platforms using electroplated sacrificial layers, Sensors and Actuators A, Vol. 35, pp. 61-68, 1992.
[15] J. M. Younse, Mirrors on a chip, IEEE Spectrum, pp. 27-31, Nov. 1993.
[16] L. J. Hornbeck, Current status of the digital micromirror device (DMD) for projection television applications, IEEE IEDM, Washington, DC, Dec. 1993.
[17] V. Markandey, R. J. Gove, Digital display systems based on the digital micromirror device, SMPTE Journal, pp. 680-685, Oct. 1995.
[18] J. M. Gere, S. P. Timoshenko, Mechanics of Materials, 2nd SI Ed., 1984.
[19] David K. Cheng, Field and Wave Electromagnetics, 2nd Ed., 1989.
[20] S. Timoshenko, D. H. Young, Elements of Strength of Materials, 5th Ed., 1968.
[21] C. Kittel, Introduction to Solid State Physics, 6th Ed., 1993.
[22] K. E. Petersen, Silicon as a mechanical material, Proc. IEEE, Vol. 70, pp. 420, 1982.
[23] D. L. Kendall, Vertical etching of silicon at very high aspect ratios, Ann. Rev. Mater. Sci., pp. 377, 1979.
[24] M. Mehregany, S. D. Senturia, Anisotropic etching of silicon in hydrazine, Sensors and Actuators, Vol. 13, pp. 375, 1988.
[25] A. Pandy, L. M. Landsberger, et al., Experimentalinvestigation of high Si/Al selectivity during anisotropic etching in TMAH, J. Vac. Sci. Technol., A16(2), 1998.
[26] V. Karanassios, G. Mew, Anisotropic wet chemical etching of Si for chemical analysis applications, Sensors and Materials, Vol. 9, No. 7, pp. 398, 1997.
[27] N. Tas, T. Sonnenberg, et al., Stiction in surface micromachining, J. Micromech. Microeng., Vol. 6, pp. 385-397, 1996.
[28] T. Abe, W. C. Messner, M. L. Reed, Effect of elevated temperature treatments in microstructure release procedures, IEEE J. Microelectromech. Syst., Vol. 4, No. 2, pp. 66-75, Jun. 1995.
[29] C. J. Kim, J. Y. Kim, B. Sridharan, Comparative evaluation of drying techniques for surface micromachining, Sensors and Actuators A, Vol. 64, pp. 17-26, 1998.
[30] R. Maboudian, Critical review: adhension in surface micro-mechanical structures, J. Vac. Sci. Technol., Vol. B 15, pp. 1-20, Jan./Feb. 1997.
[31] T. Tanaka, M. Morigami, et al., Freeze-drying process to avoid resist pattern collapse, Jpn. J. Appl. Phys., Vol. 32, pp. 5813-5814, 1993.
[32] D. Kobayashi, C. J. Kim, H. Fujita, Photoresist-assisted release of movable microstructures, Jpn. J. Appl. Phys., Vol. 32, pp. 1642-1644, 1993.
[33] K. J. Gasvik, Optical Metrology, 2nd Ed., 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔