[1] S. M. Sze, Semiconductor Sensors, John Wiley and Sons Inc., 1994.
[2] S. M. Sze, Physics of Semiconductor Devices, John Wiley and Sons Inc., 1981.
[3] 周正三, 熱導型壓力微感測器, 國立交通大學光電工程研究所博士論文, 1997.[4] 翁炳國, 矽之微細加工技術及應用, 國立交通大學光電工程研究所博士論文, 1992.[5] H. Baltes, CMOS micro electro mechanical systems, Sensors and Materials, Vol. 9, No. 6, pp. 331-346, 1997.
[6] R. T. Howe, Surface micromachining for microsensors and micro-actuators, J. Vac. Sci. Technol. B, No. 6, pp. 1809-1813,1988.
[7] S. S. Lee, L. Y. Lin, M. C. Wu, Surface-micromachined free-space fibre-optic switches, Electronics Letters, Vol. 31, No. 17, pp. 1481-1482, 1995.
[8] K. E. Petersen, Silicon as a mechanical material, Proceedings of the IEEE, Vol. 70, pp.420-456, 1982.
[9] H. Seidel, The mechanisam of anisotropic silicon etching and its relevance for micromachining, Transducers’87, Rec. of the 4th Int. Conf. on Solid-State Sensors and Actuators, pp. 120-125, 1987.
[10] D. B. Lee, Anisotropic etching of silicon, J. Appl. Phys., Vol. 40, No.11, pp. 4569-4574, Oct. 1969.
[11] J. Buhler, J. Funk, et al., Electrostatic aluminum micromirrors using double-pass metallization, J. Microelectromech. Syst., Vol. 6, No. 2, pp. 126-135, Jun. 1997.
[12] D. W. Monk, R. O. Gale, The digital micromirror device for projection display, Microelectronic Engineering, Vol. 27, pp. 489-493, 1995.
[13] O. Tabata, K. Shimaoka, R. Asahi, S. Sugiyama, Micromachined sensors using polysilicon sacrificial layer etching technology, Sensors and Materials, Vol. 8, No. 1, pp. 57-67, 1996.
[14] Y. W. Kim, M. G. Allen, Single- and Multi-layer surface-micromachined platforms using electroplated sacrificial layers, Sensors and Actuators A, Vol. 35, pp. 61-68, 1992.
[15] J. M. Younse, Mirrors on a chip, IEEE Spectrum, pp. 27-31, Nov. 1993.
[16] L. J. Hornbeck, Current status of the digital micromirror device (DMD) for projection television applications, IEEE IEDM, Washington, DC, Dec. 1993.
[17] V. Markandey, R. J. Gove, Digital display systems based on the digital micromirror device, SMPTE Journal, pp. 680-685, Oct. 1995.
[18] J. M. Gere, S. P. Timoshenko, Mechanics of Materials, 2nd SI Ed., 1984.
[19] David K. Cheng, Field and Wave Electromagnetics, 2nd Ed., 1989.
[20] S. Timoshenko, D. H. Young, Elements of Strength of Materials, 5th Ed., 1968.
[21] C. Kittel, Introduction to Solid State Physics, 6th Ed., 1993.
[22] K. E. Petersen, Silicon as a mechanical material, Proc. IEEE, Vol. 70, pp. 420, 1982.
[23] D. L. Kendall, Vertical etching of silicon at very high aspect ratios, Ann. Rev. Mater. Sci., pp. 377, 1979.
[24] M. Mehregany, S. D. Senturia, Anisotropic etching of silicon in hydrazine, Sensors and Actuators, Vol. 13, pp. 375, 1988.
[25] A. Pandy, L. M. Landsberger, et al., Experimentalinvestigation of high Si/Al selectivity during anisotropic etching in TMAH, J. Vac. Sci. Technol., A16(2), 1998.
[26] V. Karanassios, G. Mew, Anisotropic wet chemical etching of Si for chemical analysis applications, Sensors and Materials, Vol. 9, No. 7, pp. 398, 1997.
[27] N. Tas, T. Sonnenberg, et al., Stiction in surface micromachining, J. Micromech. Microeng., Vol. 6, pp. 385-397, 1996.
[28] T. Abe, W. C. Messner, M. L. Reed, Effect of elevated temperature treatments in microstructure release procedures, IEEE J. Microelectromech. Syst., Vol. 4, No. 2, pp. 66-75, Jun. 1995.
[29] C. J. Kim, J. Y. Kim, B. Sridharan, Comparative evaluation of drying techniques for surface micromachining, Sensors and Actuators A, Vol. 64, pp. 17-26, 1998.
[30] R. Maboudian, Critical review: adhension in surface micro-mechanical structures, J. Vac. Sci. Technol., Vol. B 15, pp. 1-20, Jan./Feb. 1997.
[31] T. Tanaka, M. Morigami, et al., Freeze-drying process to avoid resist pattern collapse, Jpn. J. Appl. Phys., Vol. 32, pp. 5813-5814, 1993.
[32] D. Kobayashi, C. J. Kim, H. Fujita, Photoresist-assisted release of movable microstructures, Jpn. J. Appl. Phys., Vol. 32, pp. 1642-1644, 1993.
[33] K. J. Gasvik, Optical Metrology, 2nd Ed., 1995.