(3.239.33.139) 您好!臺灣時間:2021/03/07 23:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭博修
研究生(外文):Po-Hsiu Cheng
論文名稱:具高自發輻射因子的半導體微小共振腔雷射之特性研究
論文名稱(外文):Study of high spontaneous emission factor semiconductor microcavity lasers
指導教授:賴映杰
指導教授(外文):Yinchieh Lai
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:103
中文關鍵詞:微小共振腔圓盤圓環雷射自發輻射因子
外文關鍵詞:microcavitymicrodisk & microring laserspontaneous emission factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們將詳述如何製作具有高自發輻射因子的半導體微小共振腔雷射,並對此種雷射的特性作研究。其中包括了雷射的工作波長,自發輻射因子,與雷射的遠場光場分佈。除了波長為1.5 mm的雷射外,我們也首次成功的開發了波長在0.66 mm的雷射。此微小共振腔的雷射模態可藉由三度空間中whispering-gallery mode (WGM)的波動方程式經由等效折射率的方式,將問題簡化為只需兩個指標的兩度空間問題。其中一個指標與光場徑向分佈r有關,另一個則和光場在方位角f相關。當雷射共振腔較大時,我們曾發現有趣的多模競爭,但是當微共振腔的體積減小後,雷射便可達成單模輸出。微共振腔雷射的高自發輻射因子b,是反比於共振腔內的共振模數目。我們也由單模雷射速率方程式推導出量測雷射激發與輸出光強的關係,而作曲線擬合可直接得到雷射的b值。經研究不同大小的微共振腔之b值後,我們確定了b值與雷射共振腔大小的關係。
在遠場光強分佈上,微共振腔雷射在與圓盤雷射所在平面的垂直向量z的夾角q方向的發散角遠小於具有同一寬度的邊射型雷射的發散角。由傅氏光學來看,遠近場的光場分佈為一傅氏轉換,因此在厚度比波長小的近場面所得到的遠場發散角將會大於180度。不過在圓柱座標下,我們可推導出一個純量波動方程式,其中的遠場發散角還含有一個Hm (kr R )2的因子在分母部份,因此使得發散角變小。光強在f方向則呈現在圓周上有m個光強極大值,m代表的是共振模在共振腔內繞一圈所作全反射的次實驗上,輸出光為在共振腔平面的線性偏極光。
In this dissertation, we fabricate high spontaneous emission factor semiconductor microcavity lasers and study their lasing properties such as the resonant wavelength, spontaneous emission factors, and far-field emission distributions. We also succeed on extending the operation wavelength region of these microcavity lasers from 1.5 mm to 0.66 mm. Interesting mode competition is observed for larger cavity volume lasers while the cavity volume is only a few times of cubic wavelength, single mode lasing can be achieved. We develop a method to deduce the spontaneous emission factor b from the experimental light output versus pumping intensity curves based on a single-mode rate equation analysis. Comparison of the b values for microcavities with different cavity volumes clearly indicates b is inversely proportional to the cavity volume.
Here we follow the conventional (r,f,q) notation in the cylindrical coordinate. We find that the far-field emission in the q direction for microdisk and microring laser has a narrow Gaussian distribution and the FWHM of the angular spread qFWHM is much smaller than that of a planar source with the same thickness. Based on a scalar diffraction theory in the cylindrical coordinate, an analytic expression for qFWHM is derived. The results exhibit an additional Hankel function factor difference when compared with the case of a planar boundary. This factor narrows the angle spreading in the q direction and is a function of the disk diameter. On the other hand, the far-field emission in the f direction shows a m-peaks quasi-periodic distribution around the circumference, where m is the azimuthal index. The polarization of emission is linearly polarized along the f direction from measurement.
Cover
Contents
List of Figures
List of Tables
Chapter 1 Introduction
1.1 Few words about spontaneous emission
1.2 Review of microcavity lasers
1.3 Outlines
Chapter 2 Mode characteristics of microcavity lasers
2.1 Cavity modes of microdisk lasers
2.2 Cavity quality factor
2.3 Experimental data with WGM analysis
Chapter 3 Fabrication of microcavity semiconductor lasers
3.1 Fabrication of microdisk lasers
3.2 Fabrication of microring lasers
3.3 Fabrication of near-edge microdisk lasers
3.4 λ=0.66μm red microdisk lasers
Chapter 4 Lasing characteristics of lasers
4.1 Experimental setup
4.2 Experimental results
4.3 Spontaneous emission factor of semiconductor lasers
4.4 Numerical curve fitting method to derive β and Pth based on singlemode rate equations
4.5 Physical meaning of the fitted curves
4.6 Comparison of β for various microcavity lasers
Chapter 5 Far-field emission and field polarization of microdisk lasers
5.1 Experimental setup
5.2 Far-field emission in the θ direction
5.3 Scalar analysis and vectorial analysis of far-field distribution in θdirection
5.4 Far-field emission in the ψdirection and the emission polarization
Chapter 6 Discussions and future works
6.1 Contributions of this dissertation
6.2 Work we have tried but got no significant results
6.3 Improvement for microdisk & ,ovtptomh sdrtd
6.4 Further related topics
Bibliography
1. [p299] H. Yokoyama,in Spontaneous Emission and Laser Oscillation in Microcavities, H. Yokoyama and K. Ujihara, editors, p. 299, CRC press, 1995.
2. [McCall]S. L. McCall, A. F. Levi, R. E. Slusher, S. J. Pearton and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett., 60 , 289 (1992).
3. [Blue] M. Hovinen, J. Ding, A. V. Nurmikko, D. C. Grillo, J. Han, L. He, and R. L. Gunshor, "Blue-green laser emission from ZnSe quantum well microresonators," Appl. Phys. Lett., 63, 3128 (1993).
4. [QC] J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, F. Capasso, D. L. Sivco and A. Y. Cho, "Quantum cascade disk lasers," Appl. Phys. Lett., 69, 2456 (1996).
5. [Science] C. Gmachl, F. Capasso, E. E. Narimanov, J. U. N ckel, A. D. Stone, J. Faist, D. L. Sivco, A. Y. Cho, "High-power directional emission from microlasers with chaotic resonators," Science, 280, 1556 (1998).
6. [Native Oxi, 940 nm] M. J. Rise, E. I. Chen, N. Holonyak, Jr., G. M. Iovino and A. D. Minervini, "Planar native-oxide-based AlGaAs-GaAs-InGaAs quantum microdisk lasers," Appl. Phys. Lett., 68, 1540 (1996).
7. [Native Oxi, 750 nm] M. J. Rise, E. I. Chen, N. Holonyak, Jr., G. M. Iovino and A. D. Minervini, "Planar disorder- and native-oside-defined photopumped AlAs-GaAs supperlattice minidisk lasers," J. Appl. Phys., 79, 8204 (1996).
8. [GaAs 830 nm] U. Mohideen, W. S. Hobson, S. J. Pearton, F. Ren, and R. E. Slusher, "GaAs/AlGaAs microdisk lasers," Appl. Phys. Lett., 64, 1911 (1994).
9. [micro droplets] H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, "Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonance," Opt. Lett., 9, 199 (1984).
10. [droplet 2] M. Kuwata-Gonokami, K. Takeda, H. Yasuda, and K. Ema, "Laser emission from Dye-Doped Polystyrene Microsphere," Jpn. J. Appl. Phys. Lett., 31, 99 (1992).
11. [droplet 3] H. Taniguchi and H. Tomisawa, "Wavelength tuning in spherical liquid dye lasers by controlling the cavity Q values," Appl. Phys. Lett., 65, 3305 (1994).
12. [droplet 4] M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slucher and S. Ozawa, "Polymer microdisk and microring lasers," Opt. Lett., 20, 2093 (1995).
13. [1980] I. Ury, S. Margalit, N. Bar-Chaim, M. Yust, D. Wilt, and A. Yariv, "Whispering gallery lasers on semi-insulating GaAs substrates," Appl. Phys. Lett., 36, 629 (1980).
14. [1980] A. S.-H. Liao, and S. Wang, "Semiconductor injection lasers with a cirlular resonator," Appl. Phys. Lett., 36, 801 (1980).
15. [cylindrical theory] D. Y. Chu and S. T. Ho, " Spontaneous emission from excitons in cylindrical dielectric waveguide and the spontaneous emission factor of microcavity ring lasers", J. Opt. Soc. Am. B., 10, 381 (1993).
16. [cylindrical exp] A. F. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, "Room-temperature lasing actionin InGaP/InGaAs microcylinder laser diode," Appl. Phys. Lett., 62, 2021 (1993).
17. [microring] J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho. W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic-wire laser," Phys. Rev. Lett., 75, 2678 (1995).
18. [microring2] T.D. Lee, P.H. Cheng, J.S. Pan, K. Tai and Y. Lai, "Mode emission characteristics of semiconductor micro-disk and micro-ring lasers," Opt. Quant, Electron., 28, 1335 (1996).
19. [directional] D. Y. Chu, M. K. Chin, W. G. Bi, H. Q. Hou, C. W. Tu and S. T. Ho, "Double-disk structure for output coupling in microdisk lasers," Appl. Phys. Lett., 65, 3167 (1994).
20. [directional] A. F. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, "Directional light coupling from microdisk lasers," Appl. Phys. Lett., 62, 561 (1993).
21. [polarization] N. C. Frateschi, A. P. Kanjanmata, and A. F. Levi, "Polarization of lasing emission in microdisk laser diodes," Appl. Phys. Lett., 66, 1859 (1995).
22. [linewidth] U. Mohideen, R. E. Slusher, F. Jahnke, S. W. Koch, "Semiconductor microlaser linewidth," Phys. Rev. Lett., 13, 1785 (1994).
23. [threshold] R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett., 63, 1310 (1993).
24. [Levi, smallest] A. F. Levi, S. L. McCall, S. J. Pearton and R. A. Logan, "Room temperature operation of submicrometer radius disk laser," Elec. Lett., 29, 1666 (1993).
25. [Levi, room temp] A. F. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, "Room-temperature lasing actionin InGaP/InGaAs microcylinder laser diode," Appl. Phys. Lett., 62, 2021 (1993).
26. [Levi, first electrical] A. F. Levi, R. E. Slusher, S. L. McCall, T. Tanbun-Ek, D. L. Coblentz and S. J. Pearton, "Room temperature operation of microdisc lasers with submilliamp threshold current,". Elec. Lett., 28, 1010 (1992).
27. [Levi, polarization] N. C. Frateschi, A. P. Kanjanmata, and A. F. Levi, "Polarization of lasing emission in microdisk laser diodes," Appl. Phys. Lett., 66, 1859 (1995).
28. [Haus] B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, "Wavelength switching and routing using absorption and resonance," IEEE. Phot. Tech. Lett., 10, 816 (1998).
29. [photonic bandgap] D. Labilloy, H. Benisty, C. Weisbuch,, T.F. Krauss, C.J.M. Smith, R. Houdre, H. Oesterle, "Microdisks with circular photonic bandgap boundaries exhibit high-quality low-order modes", CLEO/Europe, 142 (1998).
30. L. Djaloshinski and M. Orenstein, "Disk and Ring Microcavity Lasers and Their Concentric Coupling," IEEE J. Quantum Electron., 35, 737 (1999).
31. [Baba, cw] M. Fujita, K. Inoshita and T. Baba, "Room temperature continuous wave lasing characteristics of gaInAsP/InP microdisk injection laser," Elec. Lett., 34, 278 (1998).
32. [Baba, microdisk] T. Baba, M. Fujita, A. Sakai, M. Kihara and R. Watanabe, "Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection Lasers with Diameter of 2-10 mm," IEEE Photonics Tech. Lett., 9, 878 (1997).
33. [Babe, probe] H. Yamada, A. Sakai, M. Fujita and T. Baba, "Optical near-field probe action in microdisk laser with 0.12 l resolution," Elec. Lett., 35, 222 (1999).
34. [Ho&McCall] S. T. Ho, R. E. Slusher, and S. L. McCall, " ," Quant. Electron. Laser Sci. Tech. Dig., 11, 54 (1991).
35. [Ho] M. K. Chin, D. Y. Chu, and S. T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering galery modes," J. Appl. Phys., 75, 3302 (1994).
36. [Ho] M. K. Chin, D. Y. Chu, and S. T. Ho, "Approximate solution of the whispering gallery modes and estimation of the spontaneous emission coupling factor for microdisk lasers," Opt. Comm., 109, 467 (1994).
37. [Ho] D. Y. Chu and S. T. Ho, "Spontaneous emission from excitons in cylindrical dielectric waveguides and the spontaneous-emission factor of microcavity ring lasers," J. Opt. Soc. Am. B, 10, 381 (1993).
38. [Ho, resonator] D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho and R. C. Tiberio, "Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finess and 21.6-nm free spectral range," Opt. Lett., 22, 1244 (1997).
39. [Liu, FDTD] B.-J. Li and P.-L Liu, "Numerical Analysis of the Whilpering Gallery Modes by the Finite-Dirrernece Time-Domain Method," IEEE J. Quantum Electron., 32, 1583 (1996).
40. [Liu, Far-field] B.-J. Li and P.-L Liu, "Analysis of Far-Field Patterns of Microdisk Resonators by the Finite-Difference Time-Domain Method," IEEE J. Quantum Electron., 33, 1489 (1997).
41. [Liu, roughness] B.-J. Li and P.-L Liu, "Numerical Analysis of microdisk lasers with rough boundaries," IEEE J. Quantum Electron., 33, 791 (1997).
42. [rough loss] B. E. Little and S. T. Chu, "Estimating surface-roughness loss and output coupling in microdisk resonators," Opt. Lett., 21, 1390 (1996).
43. [wafer bonding] B. Corbett, J. Justice, L. Considine, S. Walsh, and W. M. Kelly, "Low-Threshold Lasing in Novel Microdisk Geometries,", IEEE J. Quantum Electron., 32, 855 (1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔