(3.236.175.108) 您好!臺灣時間:2021/02/28 03:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林碧亮
研究生(外文):Bi Liang Lin
論文名稱:自來水管網系統設計最佳化之發展與研究
論文名稱(外文):Development of System Design Optimization for Water Distribution Networks
指導教授:廖述良廖述良引用關係吳瑞賢吳瑞賢引用關係
指導教授(外文):Shu Liang LiawRay Shyan Wu
學位類別:博士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:278
中文關鍵詞:自來水管網系統設計最佳化列舉法規則庫啟發式演算法遺傳演算法
外文關鍵詞:Water SupplyPipe Networks SystemDesignOptimizationEnumerationRule-Based Heuristic ApproachGenetic Algorithm
相關次數:
  • 被引用被引用:18
  • 點閱點閱:465
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:5
在過去三十來,自來水管網系統規劃設計最佳化之相關問題,一直不斷在文獻上出現,惟國內相關之研究文獻較少,需提昇其研究水準,同時因為配水管網系統的複雜特性,使得最佳化模式在求解與實務應用兩大問題上有部份困難。為解決問題,本研究針對自來水管網系統設計,以商用管徑之離散變數為基礎,發展建立一套自來水配水系統規劃與設計最佳化模式,在求解上,研究、改良與發展不同演算法以比較其適用情形,在實務應用上,配合各種不同實務工程之需求以案例進行研究,其相關之問題從理論到實務工程設計之應用等作一系列有系統之探討,並獲致良好之結果,有助於對複雜系統之了解與實務應用。
  本研究獲致之重要成果與結論如下:
1. 本研究以各種改良方法進行列舉法之改善,在保持求得最佳解之特性下,均可改善列舉法之求解效率,對於組合最佳化之問題,其理論可依特性應用於其它不同的領域。
2. 本研究依演化論之概念發展與建立之規則庫啟發式演算法,由案例之結果顯示,可以有效且很短之時間內找到經濟之系統方案,同時提供以往難以求解之大型系統,一個良好之求解演算法。
3. 列舉法、規則庫啟發式演算法或遺傳演算法在各別求解與結合求解時,其結果顯示求解效率與系統成本間為一權衡關係,列舉法之結合有助於解之改善,但所需之執行時間長,遺傳演算法在中型系統求解之系統成本與效率均良好,但系統變大時,則以規則庫啟發式演算法較為適用。
4. 目前配水系統設計最佳化模式在實務應用上,因為不同階段實務工程規劃設計之不同需求,配水管網系統的複雜特性,使得最佳化在實務應用上有部份困難。本研究以理論與實務之觀點所建立之最佳化模式,配合所應用與發展之求解演算,可以滿足實務應用之需求,除了求解效率之提昇之外,經由案例之比較,最佳化設計方案與傳統設計方案之建造成本,在符合設計規範下,節省13.3%至30.2%左右,對於實務工程設計與工程經費均有幫助。
5. 配水管網之規劃設計除了考慮成本外,其風險度之考量為現有實務設計所缺乏之一環,小區管網之設計需同時考量主取水與副取水點之水力分析是否合乎規範,即是風險考量的一環,另外亦可配合多負載供水型態之要求,斷管之發生或緊急消防用水之需求等,考量其可能增加之風險。設計最佳化模式之應用與可能之風險考量合併計算,將提供經濟與安全兩難之平衡點。
Topics related to the system design optimization for water distribution network have been discussed consistently in the literature for the past three decades. However, there are few papers on similar subject in the local publications. Given the complex nature of the water distribution system, its optimization model faces some difficulty in two major concerns- solution and practical application. This study develops a design optimization model for the water distribution network system using commercial pipe diameter as discrete variables. On solution, this model studies, improves and develops different algorithms and compares their respective applicability. On practical application, this model can be used for case study under different engineering requirements. This paper has performed a series of systematic study from theoretical propositions to practical engineering designs and obtained satisfactory results which will help the management of complex systems and offer practical applications.

This study has attained the following important findings and conclusions:
1. This study used various methods to improve the solution efficiency of enumeration while retaining the characteristics of optimal solution, and its theoretical basis on optimal combination can be applied to other fields.
2. This study developed and established a rule-based heuristic approach based on the notion of evolution. Our case study results demonstrated that this approach allowed the effective finding of an economical system in a very short span, and at the same time, provided a well-working solution algorithm for large-scale system that previously had difficulty obtaining a solution.
3. When seeking solution respectively or collectively using enumeration, rule-based heuristic approach and genetic algorithm, the outcome showed that there existed a balance relationship between solution efficiency and system cost. The combination of enumeration helped improve the chance of solution, but the execution time required was relatively long. Genetic algorithm was adequate for medium-scale systems in terms of system cost and efficiency of solution finding. But for larger system, rule-based heuristic approach was more pertinent.
4. The optimization models for the design of water distribution system currently available encountered some difficulties in practical application, given the varying demands in different stages of engineering planning and the complexity of the distribution network system. The optimization model presented herein from both the theoretical and practical standpoints, with solution algorithms applied and developed, can meet the demands of practical application. In addition to enhancing the solution efficiency, the optimal design developed based on the model helped save the construction cost by 13.3% to 30.2% in comparison with conventional designs, without compromising the conformity to design criteria.
5. The design of pipe network system often put more focus on cost, while overlooking risk factors. A case in point is the design of small-region pipe network where the hydraulic power at both the main intake and auxiliary intake should be taken into account. Other risks that should be analyzed include multi-load supply pattern, the incidence of broken pipes or emergency water demand in the case fire fighting. The optimization model can give consideration to both the application and potential risks and provides a balanced point between economics and safety.
封面
中文摘要
英文摘要
誌謝
目錄
圖目錄
表目錄
符號說明
第一章 緒論
1-1 研究緣起
1-2 研究目的
1-3 研究流程
第二章 文獻回顧
2-1 國內實務工程規劃設計流程與方法
2-2 配水管網水力模擬模式
2-3 配水管網最佳化模式與演算法
第三章 最佳化模式之建立與求解演算法之分析
3-1 概述
3-2 水力分析模擬模式之運用
3-3 最佳化模式之發展與建立
3-4 求解演算法之比較與分析
3-5 方案產生法之應用
3-6 程式之發展與建立
3-7 案例研究與結果討論
第四章 列舉法之發展與改進
4-1 概述
4-2 列舉法之演進與介紹
4-3 列舉法之改進方法與應用
4-4 案例研究與結果討論
第五章 演化式演算法之發展與改進
5-1 演化式演算之概述
5-2 規則庫啟發式演算法之發展與應用
5-3 遺傳演算法之發展與應用
5-4 模式之複雜度與演算法之選用
第六章 實務工程設計之應用與探討
6-1 實務工程需求與最佳化模式之應用
6-2 管網經濟壓力之探討
6-3 小區管網與最佳化模式
6-4 配水池之設計
第七章 結論與建議
7-1 結論
7-2 建議
參考文獻
附錄一、研究案例之配置與基本資料
附錄二、修正哈弟-克勞斯法之資料輸入與輸出檔說明
附錄三、案例#3與案例#4之組合分佈與可行解之組合數
附錄四、案例之可行管徑
附錄五、自來水工程費概估表與物價指數表
附錄六、管網水力模式試算表(哈弟克勞斯法)
附錄七、管網系統設計最佳化程式
1. Artina, S. (1973). The use of mathematical program techniques in designing hydraulic networks. Meccania, pp.158-165.
2. Alperovits, E., and U. Shamir, (1977). " Design of optimal Water Distribution Design ," Water Resources Research, Vol. 13, No.6.
3. Brooke, A., D. Kendrick, and A. Meeraus, (1988). GAMS: a user’s guide, The Scientific Press, Redwood City, Calif.
4. Cesario, L. (1995). Modeling, Analysis, and Design of Water Distribution Systems, American Water Works Association.
5. Chang, S. Y. and S. L. Liaw, (1987). “An efficient implicit enumeration algorithm for multistage systems,” Paper presentation edited at the TIMS/ORSA joint national meeting. New Orleans, L. A.
6. Dandy, G. C., A. R. Simpson, and L. J. Murphy, (1996). "An improved genetic algorithm for pipe network optimization," Water Resources Research, Vol. 32, No. 2, pp.449-458.
7. Davis, C. (1987) "Genetic Algorithms and Simulated Annealing," ,216, Pitman London.
8. Deb, K. A. (1973). "Least cost design of water main system in series," Journal of the environmental engineering division, ASCE, Vol. 99, No. EE3, pp.405-409.
9. Demuren, A. D., and F. J. K. Ideriah, (1986). "Pipe Network Analysis by Partial Pivoting Method," Journal of Hydraulic Division, ASCE, Vol. 112, No. 5, pp.1219-1234.
10. Dodge, E. R., H. R. Hoellein, and L. Tetmajer, (1978). "The Analysis of Large Complex Water Networks with Small Computer System," Journal of AWWA, pp. 366-370.
11. Featherstone, R. E., and K. K. EI-Jumaily, (1983). " Optimal diameter selection for pipe networks, " Journal of Hydraulics, ASCE, Vol. 109, No. 1.
12. Fujiwara, O., (1987). "A Modified Linear Programming Gradient Method for Optimal Design of Looped Water Distribution Network," Water Resources Research, Vol. 23, No. 6, pp.977-982.
13. Fujiwara, O., and D. Dey, (1987). "Two adjacent pipe diameters at the optimal solution in the water distribution network models," Water Resources Research, Vol. 23, No. 8, pp.1457-1460.
14. Fujiwara, O., and D. Dey, (1988). "Method for Optimal Design of Branched Networks on Flat Terrain," Journal of Environmental Engineering, ASCE, Vol. 114, No.6.
15. Gessler, J. (1985). "Pipe network optimization by enumeration," Proceeding, Computer applications for water resources, ASCE, New York. pp.572-581.
16. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Company, Inc.
17. Goulter, I. C. (1992). "System analysis in water distribution network design from theory to practice," Journal of water resources planning and management, ASCE, Vol. 118, No. 3, pp.238-248.
18. Kirmeyer, G. J., W. Richards, and C. D. Smith, (1994). "An Assessment of Water Distribution Systems and Associated Research Needs," AWWA Research Foundation.
19. Halhal, D., G. A. Walters, and D. A. Savic, (1997). "Water network rehabilitation with structured messy genetic algorithm," Journal of water resources planning and management, ASCE, Vol. 123, No. 3, pp.137-146.
20. Holland, J. H. (1975) "adaptation in Natural and artificial Systems," Ann Arbor, MI.: The University of Michigan.
21. Isaacs, L. T., and K. G. Mill, (1980). "Linear Theory Methods for Pipe Networks Analysis," Journal of Hydraulic Division, ASCE, Vol. 106, No. 7, pp.1191-1201.
22. Kessler, A., and U. Shamir, (1989). "Analysis of the linear programming gradient method for optimal design of water supply networks," Water Resources Research, Vol. 25, No. 7, pp.1469-1480.
23. Lansey, K. E., and L. W. Mays, (1989). "Optimization Model for Water Distribution System Design," Journal of Hydraulic Engineering, ASCE, Vol. 115, No. 10, pp.1401-1418.
24. .Lansey, K. E., N. Duan, L. W. Mays, and Y. K. Tung, (1989). "Water Distribution System Design Under Uncertainties," Journal of Water Resources Planning and Management, Vol. 115, No. 5.
25. Lemieux, P. F. (1972). "Efficient Algorithm Distribution Networks," Journal of Hydraulic Division, ASCE, Vol. 98, No. 11, pp.1191-1920.
26. Liaw, S. L. (1986). "Use of Optimization Models in the Design of Wastewater Treatment Systems," Thesis presented to University of Missouri, in partial fulfillment of the requirement for the degree of Doctor of Philosophy.
27. Lin, B. L., S. L. Liaw, and R. S. Wu, (1997). "A Heuristic Approach Algorithm for the Optimization of Water Distribution Networks," WATERMATEX 97: 4th International Symposium "System Analysis and Computing in Water Quality Management," Quebec City, Canada. pp.89-96.
28. Lin B. L., R. S. Wu and S. L. Liaw (1997). "A heuristic approach algorithm for the optimization of water distribution networks," Water Science and Technology, Vol. 36, No. 5, pp.219-226.
29. May, L. W. (1989). "Reliability Analysis of Water Distribution System," American Society of Civil Engineers, New York.
30. Morgan, D. R., and I. C. Goulter, (1985). "Optimal Urban Water Distribution System," Water Resources Research, Vol. 21, No. 5, pp.642-652.
31. Oron, G., and D. Karmeli, (1979). "Procedure for economic evaluation of water networks parameters," Water Resources Bulletin, Vol. 15, No. 4, pp.1050-1060.
32. Orth, H. M. (1986). Model-based design of water distribution and sewage systems, John Wiley, New York, pp.154-157.
33. Quindry, G. E., E. D. Brill, and J. C. Liebman, (1981). "Optimization of Looped Water Distribution System," Journal of Environmental Engineering, ASCE, Vol. 107, No 4.
34. Reis, L. F. R., R. M. Porto, and F. H. Chaudhry, (1997). "Optimal location of control valves in pipe networks by genetic algorithm," Journal of water resources planning and management, ASCE, Vol. 123, No. 6, pp.317-326.
35. Rowell, W. F., and J. Barnes, (1982). "Obtaining Layout of Water Distribution System," Journal of Hydraulics Division. ASCE, Vol. 108(HY), No. 1.
36. Savic, D. A., and G. A. Walters, (1997). "Genetic algorithms for least-cost design of water distribution networks," Journal of water resources planning and management, ASCE. Vol. 123, No. 2, pp.67-77.
37. Shamir, U., and C. D. D. Harward, (1968). "Water Distribution System Analysis," Journal of Hydraulic Division, ASCE, Vol. 94, No. 1, pp.219-234.
38. Simpson, A. R., G. C. Dandy, and L. J. Murphy, (1994). "Genetic algorithms compared to other techniques for pipe optimization," Journal of water resources planning and management, ASCE, Vol. 120, No. 4, pp.423-443.
39. Walski, T. M., J. Gessler, and J. W. Sjostrom, (1988). "Selecting optimal pipe size for water distribution system," Journal of AWWA, Vol. 80, No. 2, pp.35-39.
40. Walski, T. M., J. Gessler, and J. W. Sjostrom, (1990). "Water Distribution System: Simulation and Sizing, " Lewis Publishers.
41. Walski, T. M. (1995). "Optimization and pipe-sizing decisions," Journal of water resources planning and management, ASCE, Vol. 121, No. 4, pp.340-343.
42. Wood, D. J., and C. D. A. Charles, (1972). "Hydraulic Network Analysis Using Linear Theory," Journal of Hydraulic Division, ASCE, Vol. 98, No. 7, pp.1157-1170.
43. Wood, D. J. (1980). User’s manual computer analysis of flow in pipe networks including extended period simulations. University of Kentucky, Lexington, Ky.
44. Wood D. J., and A. G. Rayes, (1981). "Reliability of Algorithms for Pipe Network Analysis," Journal of Hydraulic Diversion, Vol. 107, No. 10, pp.145-160.
45. Yates, D. F., A. B. Templeman, and T. B. Boffey, (1984). "The computational complexity of the problem of determining least capital cost designs for water supply networks," Engineering Optimization, Vol. 7, No. 2, pp.142-155.
46. 中華民國自來水協會,(1983).“自來水工程設計指南”,中華民國自來水協會。
47. 中華民國自來水協會,(1995).“自來水設備工程設施標準解說”,中華民國自來水協會。
48. 朱健行,“自來水配水區畫之探討”,自來水會刊雜誌,第六十五期,第78~88頁,民國87年2月。
49. 李成鴻,林誌能,(1986).“應用微電腦以哈第-克勞斯法管網分析”,自來水會刊雜誌,第十八期。
50. 李鴻成,(1988). ”Lotus 1-2-3 在管網水力分析上之應用”,自來水會刊雜誌,第二十八期,pp.70-84。
51. 李建中,(1983).“微電腦給水管網分析程式”,中國土木水利工程學會會刊,第十卷,第二期,pp.97-101。
52. 吳瑞賢,林永敏,(1995).“自來水管網之最佳化設計及擴建分析”,自來水會刊雜誌,第五十五期,第42~55頁。
53. 吳瑞賢,林永敏,(1995).“結合水力計算與線性規劃應用於自來水管網最佳化”八十四年電子計算機於土木水利工程應用論文研討會論文集,第1203~1214頁。
54. 李鴻成,(1988).“Lotus 1-2-3 在管網水力分析上之應用”,自來水會刊雜誌,第二十八期,pp.70-84。
55. 林偉田,(1984).“配水管網之佳化設計”,成功大學環境工程研究所碩士論文。
56. 林碧亮,廖述良,吳瑞賢,(1985).“自來水管網系統最佳化設計之初步研究”,八十四年電子計算機於土木水利工程應用研討會論文集,第417~428頁。
57. 林碧亮,廖述良,吳瑞賢,陳榮藏,(1996).“管網系統最佳化設計模式之發展與建立”,第十三屆自來水研究發表會論文集,第235~249頁。
58. 林碧亮,吳瑞賢,廖述良,(1997).“列舉法求解自來水管網最佳化設計之效率探討”,八十六年電子計算機於土木水利工程應用研討會論文集,第141~152頁。
59. 林碧亮,(1990).”污水下水道最佳系統配置與最佳水力設計模式之建立”,淡江大學水資源及環境工程研究所碩士論文。
60. 高肇藩,(1990).“衛生工程-給水篇”,成功大學環境工程學系。
61. 張斐章,陳莉,(1995). ”遺傳演算法優選水庫運用規線之研究”,農業工程學報,第41卷,第4期,pp. 20-30。
62. 陳德華、溫清光,(1984).“自來水配水管成本分析與比較”,成功大學環境工程研究所碩士論文。
63. 陳榮藏,(1975).“設計用配水管網分析及其電腦作業”,自來水期刊,第九期,pp.156-180。
64. 陳榮藏,(1976).“牛頓- 勒佛森法配水管網分析及其電腦作業”,自來水期刊,第十期,pp.98-117。
65. 陳榮藏,(1977).“以動量平衡法分析自來水配水管網及其電腦作業”,自來水期刊,第十四期,pp.42-56。
66. 陳榮藏,(1982).“配水管網分析,訓練叢書(自來水工程技術類01) ”,臺灣省自來水員工訓練所編印。
67. 陳榮藏,(1985).“配水管網分析方法之研討與應用”,自來水會刊雜誌,第十六期,第15~36頁。
68. 陳榮藏,(1986).“送配水系統水力分析之應用”,中華民國自來水協會,第三屆給水技術研討會論文集,pp.73-94。
69. 陳榮藏,(1987).“送配水系統水力分析之應用”,自來水會刊雜誌,第二十一期。
70. 郭龍郎,(1972).“送配水管線水力計算之探討”,自來水期刊,第六期,pp.105-109。
71. 葉弘德,李厚達,(1988).“大型自來水管網分析”,自來水會刊雜誌,第二十八期。
72. 黃材成,盧衍祺,(1979).“配水管流量計算法之比較研究”,台灣大學土木工程研究所碩士論文。
73. 廖述良,(1995).“自來水配水系統規劃與設計最佳化模式之發展與建立”,中華民國自來水協會。
74. 臺灣省自來水公司,(1985).“台中市小區域管網計劃報告”,中區工程處。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔