跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖宜慶
研究生(外文):Liao Yi-Ching
論文名稱:重力式下水道溶氧與生物動力之研究
指導教授:周憲德歐陽嶠暉歐陽嶠暉引用關係
指導教授(外文):C.F. Ouyang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:90
中文關鍵詞:氧傳輸再曝氣下水道管線
外文關鍵詞:Oxygen transportationreaerationsewerpipeline
相關次數:
  • 被引用被引用:3
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以長21.7m直徑0.15m的下水道模型探討管內重力流的傳輸係數(KL)與擴散係數(D)。並於馴養微生物膜後監測水質變化,取得水質變化參數以供生物動力模式之應用。模式中討論SF (fermentable readily biodegradable)、SA (volatile fatty acide)、XBW (heterotrophic active biomass in water phase)、XS1 (hydrolysible substrate,fast biodegradable)、XS2 (hydrolysible substrate,slowly biodegradable)與 Dc (dissolved oxygen)的水質變化,生物反應過程包括:水體內好氧生長(Aerobic growth in bulk water)、生物膜內好氧生長(Aerobic growth in biofilm)、維持最小能量需求(Maintenance energy requirement) 、好氧水解(Aerobic hydrolysis)、厭氧水解(Anaerobic hydrolysis)、水體與生物膜內之發酵(Fermentation in bulk water and biofilm)與再曝氣(Reaeration)等程序。研究發現氧傳輸KL值與能量消散(Energy dissipation)、流速(Velocity)及平均水力深度(mean hydraulic depth)有關。擴散係數(D)與流速(Velocity)之關係式為:D=AeBU。模式經實驗模場標定後有非常高的相關性。實驗結果可用以討論下水道現場的溶氧與水質變化。
The overall oxygen transfer coefficient (KL) and diffusion coefficient (D) of gravity flow are determined in a 21.7m long and 0.15 diameter experimental sewer. Monitoring the change of water quality after seeding, and put the water quality datas in use biological dynamics model. The discussion of water quality factors in model including SA(fermentable readily biodegradable), SA (volatile fatty acide), XBW(heterotrophic active biomass in water phase), XS1 ( hydrolysible substrate , fast biodegradable), XS2 (hydrolysiblesubstrate , slowly biodegradable) and Dc(dissolved oxygen). All of biological process in model are including Aerobic growth in bulk water, Aerobic growth in biofilm, Maintenance energy requirement, Aerobic hydrolysis, Anaerobic hydrolysis, Fermentation in bulk water and biofilm and Reaeration. The experimental results show that oxygen transfer coefficient (KL) are related with diffusion coefficient, velocity and mean hydraulic depth. The relationship with diffusion coeffieient (D) and velocity (U) are D=AeBU. The Model are calibrated by experimental sewer, and both of them have a high correlation. Finally, the results can discuss in oxygen tranfer and water quality changed in field.
第一章 前言
1.1研究緣起………………………………………………………1
1.2研究目的與內容………………………………………………3
第二章 文獻回顧與理論分析……………………………………
2.1 渠道水質模式……………………………………………….4
2.2 再曝氣係數KL模式………………………………………….7
2.3 擴散係數基本理論………………………………………….11
2.3.1 FICK’S Law…………………………………………..11
2.3.2 Fick’s second Law………………………………….11
2.3.3 濃度剖面之推導…………………………………….13
2.4 生物動力學基本理論……………………………………….14
2.4.1 微生物生長………………………………………….14
2.4.2 基質限制生長……………………………………….14
2.4.3 細胞生長與基質利用……………………………….15
2.5下水道中物理、化學與生物反應……………………………20
2.6 水質模式中各參數分析方法……………………………….24
2.7 水質模式之建構……………………………………………27
第三章 實驗設備與方法
3.1 實驗模廠與設備…………………………………………….29
3.2 實驗分析方法與設備……………………………………….34
3.3 實驗基質與生物膜培養……………………………………36
3.4下水道生物動力模式之建立…………………………………37
3.5 實驗步驟…………………………………………………….40
3.5.1水理試驗………………………………………………40
3.5.2 水質試驗…………………………………………….41
第四章 結果與討論
4.1曝氣實驗結果與討論………………………………………..42
4.1.1 曝氣係數之分析…………………………………….42
4.1.2水理參數對曝氣係數之影響………………………..47
4.2擴散係數實驗結果與討論…………………………………..53
4.3靈敏度分析…………………………………………………..63
4.3.1 平均水力深度(dm)…………………………………..63
4.3.2坡度(S)……………………………………………….64
4.3.3流速(U)……………………………………………….65
4.3.4飽和溶氧濃度(DS)…………………………………..65
4.3.5綜合討論……………………………………………..78
4.4模式與實驗之比較…………………………………………..78
4.5水質參數變化預測…………………………………………..82
第五章 結論與建議
5.1 結論………………………………………………………….85
5.2 建議………………………………………………………….87
參考文獻………………………………………………………….88
1. ASCE(1984). “A Standard for the measurement of oxygen transfer in water”. “OxygenTransfer Standard Committee”, ASCE,New York.
2. Dobbins,W. E. (1964). “BOD and oxygen relationships in stream”. J. San. Eng. Div.,ASCE, 94, 319-344.
3. Isaacs, W. P. and A. F. Gaudy(1968). “Atmospheric oxygenation in a simulated stream”. J. San. Eng. Div., ASCE, 88, No SA2, 53-58.
4. Jensen, N. Aa. (1994). “Air-water oxygen transfer in gravity sewers”. Ph.D. Thesis. Env. Lab. Aalborg University, Denmark.
5. Jensen, N. Aa. And T. Hvitved-Jacobsen (1991). “Method for Measurement of reaeration in gravity flow sewer using radiotracers”. Research Journal WPCF, 63, 758-767.
6. Krenkel, P. A. and G. T. Orlob (1962). “Turbulent diffusion and the reaeration coefficient”. J. San. Eng. Dive., ASCE, 88, No SA2, 53-58.
7. Nielsen, P.A., K. Raunkjaer, N. H. Norsker, N. Aa Jensen and T. Hvitved-Jacobsen(1992). “Transformation of waste water in sewer system — A review”. Wat. Sci. Tech., 25(6), 17-31.
8. O’Connor, D. J. and W. E. Dobbins (1958). “Mechanisms of reaeration in natural streams”. Transactions ASCE, 123, 641-684.
9. Owens, M., R. W. Edwards and J. W. Gibbs(1964). “Some reaeration studies in streams”. Int J. Air Wat. Poll. 8, 469-486.
10. Parkhurst, J. D. and Pomeroy, R. D. (1972). “Oxygen absorption in streams”J. San. Eng., Dive., ASCE, 98, No SA1, 101-124.
11. Tagizadeh-Nasser, M.(1986). “Materieoverforing gas- vatska I avloppsledningar”. (Material transfer in sewer). Licenciate Thesis.
12. Thackston, E. L. and Krenkel, P. A. (1969). “Reaeration prediction in natural streams”. J. San. Eng. Div., ASCE, 95, SA1, 65-94.
13. Tsivoglou, E. C. and J. R. Wallace (1972). “Characterization of stream reaeration capacity”. Report No EPA- R2-72-012., U.S. Enviromental Protection Agency, Washington DC.
14. Whitmore, A. and R. L. Corsi (1994). “Measurement of gas-liquid mass transfer coefficients for volatile organic compounds in sewers”,Enviromental Progress, 13, 114-123.
15. Ye-Shi Cao and Guy J. Alaerts. “A model for oxygen consumption in aerobic heterotrophic bioderadation in dual-phase drainage systems”, Wat. Res. Vol. 30, N0.4, pp.1010-1022,1996
16. Thomas,H. A., “Pollution Load Capacity of Stream”, Water and Sewage Works. Vol. 98. P.409, 1948.
17. Camp, T. R.,”Water and Its Impurities”, London. Champman and Hall. 1963.
18. O’Connor, D. J., “The Effect of Stream Flow on Waste Assimulation Capacity”, Proceeding of 17th Industrial Waste Conference. Purdue University, pp.608,1962.
19. Dobbins, r. e.,”BOD and Oxygen Relationship in Stream Purification Under Anaerobic Condition”, J. of WPCF, Vol.48. NO. 7, 1967.
20. Y. L. LAU and D. LIU, “Effect of flow on biofilm accumulation in open channels”, Wat. Res. Vol.27, NO. 3, pp355-360, 1993.
21. C.Blanca Jimenes and V. Homero Landa, “Physico-chemical and bacteriological characterization of wastewater from Mexico City”, Wat. Sci. Tech. Vol.37, NO. 1, pp1-8, 1998.
22. H. Lokkegaard Bjerre et al, “Biological acitivity of biofilm and sediment in the Emscher river, Germany”, Wat. Sci. Tech. Vol.37, NO. 1, pp9-16, 1998.
23. J.W Davies and D. Butler(1998)et al.,”Gross solids transport and degradation”, Wat. Sci. Tech. Vol.37, NO. 1, pp.61-68, 1998.
24. Jes Vollertsen and Thorkild Hvited — Jacobsen, “Aerobic microbial transformations of resuspened sediments in combined sewer-A conceptual model”, Wat. Sci. Tech. Vol.37, NO. 1, pp.69-76, 1998.
25. Y. L. LAU. “Modelling the consumption of dissolved contaminats by biofilm periphyton in open-channel “. Wat. Res. Vol. 24, NO.10., pp1269-1274, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top