跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/04 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊清鏘
研究生(外文):Ching-Chiang Chuang
論文名稱:二維可變形多體系統的動、靜態分析
論文名稱(外文):Dynamic and Static Analyses of Two Dimensional Deformable Discrete System
指導教授:王仲宇盛若磐盛若磐引用關係
指導教授(外文):Chung-Yue WangJopan Sheng
學位類別:博士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:183
中文關鍵詞:不連續變形分析有限元素法接觸時間積分法變寬帶結點重新編號
外文關鍵詞:Discontinuous Deformation AnalysisFEMcontacttime integration schemeskylinenode renumbering
相關次數:
  • 被引用被引用:14
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於分離體的動態接觸問題,由於分離體間的大位移和滑動使得分離體的接觸位置會隨著計算步程而改變,因而造成傳統有限元素法模擬的困難。為了處理分離體的運動行為而有分離元素法的產生,其中不連續變形分析法可歸類於分離元素法的一種,但是早期的不連續變形分析法(DDA)在模擬問題時每一個分離體只是單純的常應變假設,為了希望能夠更適切的模擬複雜的接觸行為,本研究將結合不連續變形分析法(DDA)和有限元素法(FEM)的優點來處理分離體的接觸問題,並進一步的改善。
在處理分離體時首先改變不連續變形分析法常應變的假設,每個分離體改用有限元來處理,目前所發展的程式分離體內可用常應變三角形、四邊形等參元或其混合形式來模擬。同時為了希望能夠處理更複雜的問題,在推導運動方程式時改用虛功原理和更新式的拉格蘭治描述來推導分離系統的運動方程式。
為了適合不連續變形分析法和有限元結合的接觸分析,分離體間的接觸偵測採用多層接觸偵測和不連續變形分析法的接觸判斷精神,並配合有限元的特性做改善。對於接觸區域不可相互貫入的接觸行為目前採用懲罰函數法來處理,並直接利用結點力的推導概念導出和元素形狀函數無關的正向接觸和剪向接觸矩陣,再配合摩擦力兩階段的處理方式可導出和勁度矩陣無關的接觸力向量,再結合分離體的接觸開閉迭代技巧,可有效的處理分離體的接觸問題。
對於分離體的慣性改用配點時間積分法來處理,並且也探討了配點時間積分法的穩定性、精確性及高頻消散能力,同時導出了配點時間積分法的位移增量式公式並做了部份參數研究,同時提出了建議參數以做為分離系統動、靜態模擬的參考。
為了能夠節省計算量和記憶體容量,採用動態記憶體的儲存方式,並利用有限元變寬帶的處理概念和分離體的接觸分析,提出分離系統的動態接觸變寬帶解法,利用此方法可處理分離系統的動、靜態接觸問題,再配合分離體結點的重新編號可以更有效節省計算量和記憶體容量,並可以為往後的接觸及開裂問題做準備。
對於分離體不可入侵的限制目前採用懲罰函數法,其中懲罰函數值可想像成一個接觸彈簧,為了獲得適當的接觸彈簧值,現階段利用每一組接觸組合彈簧能量不變的原則和容許的貫入量來估算每一個接觸組合的建議使用接觸彈簧值,利用此方式可避免接觸彈簧值直接選取的困擾,並且對許多的接觸問題都可以獲得不錯的結果。
分離系統利用上述的方式來處理應該可以更適切、有效的模擬其動、靜態行為,並且可為接觸力學研究者提供一個有效、可靠的分析模擬方法。
In the analysis of the dynamic contact problem of a multibody system, contact locations among discrete bodies may change due to the sliding and the translation of blocks. This variation of contact locations during motion leads to some computational difficulties in the analysis by applying the conventional finite element method (FEM). To handle the kinematics of multibody system, a method so-called the Discontinuous Deformation Analysis (DDA) method was introduced by Shi in the past decade. However, the constant strain field inside each block modeled by the DDA method is not capable to simulate complicated deformation behaviors of blocks of irregular shapes. Therefore, a numerical method by combining the FEM and the DDA method is developed in this thesis to well simulate the dynamic contact behaviors of two-dimensional deformable discrete system.
Finite element mesh of mixed constant strain triangle elements and four-node isoparametric elements can be patched on each block to approximate the displacement field. The system of governing equations is derived by the principle of virtual work and the updated Lagrangian description. This kind of formulation is prepared for the analysis of the multibody dynamic with material and geometrical nonlinearities.
A multi-layer contact searching technique is developed based on the contact detection techniques of DDA method and characters of the finite elements patched on blocks. Penalty method is adopted to maintain the in-penetrability constraint between contacting blocks. A normal contact matrix and a shear contact matrix, which are unrelated to the element shape function, are derived based on the nodal force concept. These two contact matrices together with a two-stage friction force treatment technique can effectively model the contact and separation conditions during motion.
To handle the inertial effect, a collocation time integration scheme that is suitable for the discrete system, is also derived in the thesis. Sets of collocation time integration parameters for static and dynamic analyses are suggested after a through study of the stability, accuracy and high frequency dissipation characters of the proposed time integration scheme.
Based on the character of the node-to-edge contact detection basic unit used in the contact analysis, a special type contact element is formed once the contact condition occurs. This type of element provides the stiffness expressed by the elements of the normal and shear contact matrices to the stiffness matrix of the global system. Since the contact locations are changing during the motion, the bandwidth of the coefficient matrix of the governing equations is also changed passively. Hence, an adaptive skyline solver combined with a nodal renumbering technique is proposed to effectively reduce the memory size and computation time for the simulation. The nodal renumbering technique can be used for the analysis of problems with fracture and fragmentation features.
The selection of a suitable penalty number for the contact analysis is an art during the past decades. In this thesis, an energy consistency technique is proposed to adaptively adjust the penalty value of the contact spring during the iteration process within a time step. This technique is valid for both the normal and the shear contact conditions.
A computational code, which is capable of simulating the dynamic and static contact behaviors of two-dimensional deformable discrete system, is developed based on all the forementioned techniques. The efficiency and accuracy of this code are verified by the results of numerical simulations of some benchmark problems.
封面
摘要
Abstract
目錄
表目錄
圖目錄
第一章 前言
1-1 研究動機
1-2 研究方法
第二章 文獻回顧
2-1 有限元素法(FEM)
2-2 分離元素法( DEM)
2-3 不連續變形分析法(DDA)
2-4 有限元素法和不連續變形分析的比較
第三章 不連續變形分析法(DDA)及塊體附貼有限元的理論
3-1 不連續變形分析的理論
3-2 增量式的描述及虛功方程
3-3 有限元三角形常應變、四邊形等參元的形狀函數及對應的線性和非線性應變-位移矩陣
3-4 有限元的彈性矩陣及幾何勁度矩陣
3-5 限制條件的推導
3-6 外力向量的推導
3-7 結論
第四章 塊體附貼有限元的接觸模擬
4-1 塊體的接觸預估
4-2 塊體的接觸、資料建立和迭代的處理
4-3 正向接觸矩陣
4-4 剪向接觸矩陣
4-5 摩擦力向量
4-6 結論
第五章 塊體附貼有限元的慣性處理
5-1 DDA的慣性處理
5-2 配點時間積分法的慣性處理
5-3 時間積分的穩定性
5-4 分離系統的靜態模擬
5-5 時間積分的正確性
5-6 配點時間積分法的位移增量公式
5-7 數值算例
5-8 結論
第六章 塊體附貼有限元動態接觸變寬帶的處理
6-1 變寬帶的定義及分解
6-2 對稱變寬帶矩陣的克雷斯基(Cholesky)分解法及SOR、共軛梯度法的上三角形方式儲存
6-3 矩陣變寬帶的儲存、容量計算及元素引用
6-4 有限元變寬帶的處理法
6-5 塊體貼附有限元動態接觸變寬帶的處理
6-6 結論
第七章 塊體附貼有限元動態接觸變寬帶的結點重新編號
7-1 結點的編號與對應矩陣元素的排列關係
7-2 圖形資料的表示法
7-3 矩陣的帶寬及包圍量
7-4 RAM( Reverse Cuthill-McKee)法的結點重新編號
7-5 反向排列的原因和包圍量的求法
7-6 有限元網格的結點排序法
7-7 塊體附貼有限元動態接觸變寬帶的結點重新編號
7-8 結論
第八章 程式驗證及數值算例
8-1 懸臂梁自由端受集中載重的變位模擬
8-2 含圓洞平板受軸向均勻拉力作用的孔邊應力集中問題
8-3 基礎承載問題的模擬
8-4 懸臂梁受到均佈載重和剛性面接觸的變位模擬
8-5 長方形桿件受均勻拉力的動、靜態模擬
8-6 一維直桿受持續外力作用和兩直桿追撞的模擬
8-7 下滑塊體位移和速度的驗證
8-8 動態接觸接觸變寬帶和上三角滿矩陣處理的比較
8-9 塊體附貼有限元動態接觸變寬帶結點重新編號的有效性
8-10 七個塊體所組成拱的動態模擬
8-11 斜面上多個塊體受重力作用的動態模擬
第九章 結論與建議
9-1 結論
9-2 建議和未來發展方向
參考文獻
附錄 A 接觸彈簧的處理
附錄 B 接觸判斷流程圖
附錄 C 塊體附貼有限元處理流程圖
1. Attaway, S. W., Hendrickson, B. A., Plimpton, S. J., Gardner, D. R., Vaughan, C. T., Brown, K. H., and Heinstein, M. W., "A parallel contact detection algorithm for transient solid dynamics simulations using PRONT3D," Computational Mechanics, Vol. 22, pp.143-159 (1998).
2. Auricchio, F., and Sacco, E., "Augmented lagrangian finite-elements for plate contact programs," International Journal for Numerical Method in Engineering, Vol. 39, pp. 4141-4158 (1996).
3. Babosa, R. E., and Ghaboussi, J., "Discrete finite element method for multiple deformable bodies," Finite Element in Analysis and Design, Vol. 7, No. 2, pp. 145-158 (1990).
4. Bathe, K. J., Finite Element Procedures, Prentice-Hall, New Jersey (1996).
5. Bathe, K. J., and Bouzinov, P. A., "On the constrain function method for contact problems," Computers and Structures, Vol. 64, No. 5/6, pp. 1069-1085 (1997).
6. Belytschko, T., and Neal, M. O., "Contact-impact by the pinball algorithm with penalty and lagrangian method," International Journal for Numerical Method in Engineering, Vol. 31, pp. 547-572 (1991).
7. Belytschko, T., Lu, Y. Y., and Gu, L., "Element-free Galerkin method," International Journal for Numerical Methods in Engineering, Vol.37, pp. 229-256 (1994).
8. Belytschko T., Krongauz, Y., Organ D., and Fleming, M.,"Meshless methods: an overview and recent developments," Computer Methods in Applied Mechanics and Engineering, Vol. 139, pp. 3-47 (1996).
9. Camacho, G. T., and Ortiz, M., "Computational modeling of impact damage in brittle materials," International Journal Solids Structures, Vol. 33, No.20-22, pp. 2899-2938 (1996).
10. Cha, K. C., and Ju, S. H., "Finite element and contact analyses of surface grinders," The 22nd National Conference on Theoretical and Applied Mechanics, Tainan, Taiwan, R. O. C., pp.331-337 (1998).
11. Chang, C. T., "Nonlinear dynamic discontinuous deformation analysis with finite element meshed block system," Ph.D. Dissertation, University of California, Berkeley, CA (1994).
12. Chang, C. S. and Acheampong, K. B., "Accuracy and stability for Static analysis using dynamic formulation in discrete element methods," Proceedings of the 2nd International Conference on Discrete Element Methods (DEM), edited by Williams, J. R., and Mustoe, G. G. W., IESL publication, pp. 379-389 (1993).
13. Chang, S. Y., "A technique for overcoming rapid changes of dynamic loading in time history analysis," Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 9, No. 3, pp. 389-398 (1997).
14. Chang, S. Y., "Improved numerical dissipation for explicit methods in pseudodynamic tests," Earthquake Engineering and Structural Dynamics, Vol. 26, pp. 917-929 (1997).
15. Chang, T. Y., Saleeb, A. F., and Shyu, S. C., "Finite element solutions of two-dimensional contact problems based on a consistent mixed formulation," Computers and Structures, Vol. 27, No. 4, pp. 455-466 (1987)
16. Chawla, V., and Laursen, T. A., "Energy consistent algorithms for frictional contact programs," International Journal for Numerical Method in Engineering, Vol. 42, pp. 799-827 (1998)..
17. Chen, W. F., Han, D. J., Plasticity for structural Engineers, Gau Lih , Taipei (1995).
18. Chen, W. H., and Yen, J. T., "Finite element analysis of finite deformation contact problems with Friction," Computers and Structures, Vol. 29, No. 3, pp. 423-436 (1988).
19. Clough, R.. W., Penzien, J., Dynamins of structures, 2nd edition, McGraw-Hill, New York (1993).
20. Cook, R. D., Concepts and applications of finite element analysis, John Wiley, Second edition, New York (1974).
21. Cundall, P. A., "A computer model for rock-mass behavior using interactive graphics for the input and output of geometric data," Report AD/A-001, 602, U.S. National Technical Information Services (1974).
22. Dokainish, M. A., and Subbaraj, K., "A survey of direct time-integration methods in computational structural dynamics-I. explicit methods," Computers and Structures, Vol. 32, No. 6, pp. 1371-1386 (1989).
23. Dokainish, M. A., and Subbaraj, K., "A survey of direct time-integration methods in computational structural dynamics-II. implicit methods," Computers and Structures, Vol. 32, No. 6, pp. 1387-1401 (1989).
24. Givoli, D., and Doukhovni, I., "Finite element-quadratic programming approach for contact problems with geometrically nonlinearity," Computers and Structures, Vol. 61, No. 1, pp. 31-41 (1996).
25. Hilber, H. M., Hughes, T. J. R., and Taylor, R. L., "Improved numerical dissipation for time integration algorithms in structural dynamics," Earthquake Engineering and Structural Dynamics, Vol. 5, pp. 283-292 (1977).
26. Hilber, H. M., and Hughes, T. J. R., "Collocation, dissipation and ''overshoot'' for time integration schemes in structural dynamics," Earthquake Engineering and Structural Dynamics, Vol. 6, pp. 99-118 (1978).
27. Hu, N., "A solution method for dynamic contact programs," Computers and Structures, Vol. 63, No. 6, pp. 1053-1063 (1997).
28. Hughes, T. J. R., "Analysis of transient algorithms with particular reference to stability behavior," Computation Methods for Transient Analysis edited by Belytschko T., and Hughes, T. J. R., pp. 67-155, North-Holland (1983).
29. Hughes, T. J. R., The finite element method, Prentice-Hall, New Jersey (1987).
30. Hunek, I., "On a penalty formulation for contact-impact problems," Computers and Structures, Vol. 48, No. 2, pp. 193-203 (1993).
31. Jing, L., "Contact formulations by energy minimization in DDA," Proceedings of the 2nd International Conference on Discrete Element Methods (DEM), edited by Williams, J. R., and Mustoe, G. G. W., IESL Publication, pp. 15-26 (1993).
32. Jouglard, C. E., and Coutinho, A. L. G. A., "A comparison of iterative multi-level finite element solvers," Computers and Structures, Vol. 69, pp. 655-670 (1998).
33. Ju, S. H., Stone, J. J., and Rowlands, R. E., "A new symmetric contact element stiffness matrix for frictional contact problems," Computers and Structures, Vol. 54, No. 2, pp. 289-301 (1995).
34. Kanto, Y., and Yagawa, G., "A dynamic contact buckling analysis by the psnslty finite element method," International Journal for Numerical Method in Engineering, Vol. 29, 755-774 (1990).
35. Ke, T. C., "Simulated testing of two dimensional heterogeneous and discontinuous rock masses using discontinuous deformation analysis," Ph.D. Dissertation, University of California, Berkeley, CA (1993).
36. Kikuchi, N., and Oden, J. T., Contact problems in elasticity: a study of variational inequalities and finite element method (1988).
37. Kim, J., and Kwak, B. M., "Dynamic analysis of two-dimensional frictional contact by linear complementarily problem formulation," International Journal Solids Structures, Vol. 33, No. 30, pp. 4605-4624 (1996).
38. Laursen, T. A., and Chawla, V., "Design of energy conserving algorithms for frictionless dynamic contact programs," International Journal for Numerical Method in Engineering, Vol. 40, pp. 863-886 (1997).
39. Liao, C. L., and Wang, H. C., "Spline approximations for direct integration of structural dynamics," Earthquake Engineering and Structural Dynamics, Vol. 16, pp. 813-826 (1988).
40. Lin, C. T., "Extensions to the discontinuous deformation analysis for jointed rock masses and other blocky systems," Ph.D. Thesis, University of Colorado (1995).
41. Lin, T. W., "Multiple roots Reverse Cuthill-McKee method for reducing the bandwidth and profile of finite element systems," Journal of the Chinese Institutes of Engineers, Vol. 12, No. 2, pp. 155-164 (1989).
42. Ling, W., and Stolarski, H. K., "A contact algorithm for problems involving quadrilateral approximation of surfaces," Computers and Structures, Vol. 63, No. 5, pp. 963-975 (1997).
43. Lu, Y. Y., Belytschko T., and Gu, L., " A new implementation of the element free galerkin method," Computer Methods in Applied Mechanics and Engineering, Vol. 113, pp.397-414 (1994).
44. Munjiza, A., "Discrete elements in transient dynamics of fractured media," Ph.D. Thesis, University of Wales (1992).
45. Nayroles, B., Touzot, G., and Villon, P., "Generalizing the finite element method: diffuse approximation and diffuse element," Computational Mechanics, Vol. 10, pp. 307-318 (1992).
46. Newmark, N. M., "A method of computation for structural dynamics," Journal of Engineering Mechanics Division. ASCE, Vol. 85, pp. 67-94 (1959).
47. Okamoto, N., and Nakzawa, M., "Finite element incremental contact analysis with various frictional conditions," International Journal for Numerical Method in Engineering, Vol. 14, 337-357 (1979).
48. Oldenburg, M., and Nilsson, L., "The position code algorithm for contact searching," International Journal for Numerical Methods in Engineering, Vol. 37, pp. 359-386 (1994).
49. Pascoe, S. K., and Mottershead, J. E., "Two new finite element contact algorithms," Computers and Structures, Vol. 32, No. 1, pp. 137-144 (1989).
50. Rahman, M. U., Rowlands, R. E., Cook, R. D., and Wilkinson, T. L., "An iterative procedure for finite-element stress analysis of frictional contact problems," Computers and Structures, Vol. 18, No. 6, pp. 947-954 (1984).
51. Reddy, N., An introduction to the finite element method, 2nd edition, McGraw-Hill, New York (1993).
52. Refaat, M. H., and Meguid, S. A., "Updated lagrangian formulation of contact programs using variational inequalities," International Journal for Numerical Method in Engineering, Vol. 40, pp. 2975-2993 (1997).
53. Reismann, H., and Pawlik, P. S., Elasticity theory and application, John Wiley & Sons, New York (1990).
54. Rice, D. L., and Ting, E. C., "Fragmentation algorithm for finite element failure simulation and analysis," Structural Engineering Report, CE-STR-92-21, Purdue University, West Lafayette, IN, U.S.A. (1992).
55. Simo, J. C., Wriggers, P., and Taylor R. L., "A perturbed lagrangian formulation for the finite element solution of contact problems," Computer Methods in Applied Mechanics and Engineering, Vol. 50, pp. 163-180 (1985).
56. Simo, J. C., and Laursen, T. A., "An augmented lagrangian treatment of contact problems involving friction," Computers and Structures, Vol. 42, No. 1, pp. 97-116 (1992).
57. Shi, G. H., "Discontinuous deformation analysis: a new numerical model for the statics and dynamics of block system," Ph.D. Dissertation, University of California, Berkeley, CA (1988).
58. Shi, G. H., "Manifold method of material analysis," Proceedings of the Ninth Army conference on Applied Mathematics and Computing, 18-21 June, Minneapolis, Minnesota, U.S.A. (1991).
59. Shyu, K., "Nodal-based discontinuous deformation analysis," Ph.D. Dissertation, University of California, Berkeley, CA (1993).
60. Ting, E. C, Lecture notes of workshop on explicit finite element approach with application to fragmentation analysis, Department of Civil Engineering, National Central University, Chungli, Taiwan, R.O.C. (1995).
61. Tran, T. X., and Nelson, R. B., "Analysis of disjoint two-dimensional particle assemblies," Journal of Engineering Mechanics, pp. 1139-1148 (1996).
62. Wang, C. Y., Sheng, J., and Chen, M. H., "Dynamic-contact analysis scheme applied in the DDA method," Proceedings of the First International Conference on Analysis of Discontinuous Deformation, edited by Li, J. C., Wang, C. Y., and Sheng, J., Chungli, Taiwan, pp. 433-459 (1995).
63. Wang, C. Y., Sheng, J., Chen, M. H., and Chuang, C. C., "Approximation theories for the manifold method," Proceedings of the Working Forum on the Manifold Method of Material Analysis, WES, U. S. Army Corps of Engineers, Vol. 1, pp.61-86 (1995).
64. Wang, C. Y., Chuang, C. C., and Sheng, J., "Time integration theories for the DDA method with finite element meshes," Proceedings of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media, edited by Salami, M. R., and Banks, D., California, U.S.A., June 12-14, pp. 263-287 (1996).
65. Wang, S. P., and Nakamachi, E., "The inside-outside contact search algorithm for finite element analysis," International Journal for Numerical Methods in Engineering, Vol.40, pp.3665-3685 (1997).
66. Wasfy, T. M., and. Noor, A. K., "Computational procedure for simulating the contact/impact response in flexible multibody systems," Computer Methods in Applied Mechanics and Engineering, Vol. 147, pp. 153-166 (1997).
67. Yang, Y. B., "Computational aspects of nonlinear analysis for space structure," The Chinese Journal of Mechanics, Vol.8, No.2, pp.93-01 (1992).
68. Zienkiewicz, O. C., and Taylor, R. L., The finite element method, McGraw-Hill, Vol.1, Fourth edition, London (1989).
69. Zienkiewicz, O. C., and Taylor, R. L., The finite element method, McGraw-Hill, Vol.2, Fourth edition, London (1989).
70. Zhai, W. M., "Two simple fast integration methods for Large-scale dynamic problems in engineering," International Journal for Numerical Methods in Engineering, Vol.39, pp. 4199-4214 (1996).
71. Zhong, Z. H., and Nilsson, L., "A contact searching algorithm for general contact problems," Computers and Structures, Vol. 33, No. 1, pp. 197-209 (1989).
72. Zhong, Z. H., and Nilsson, L., "A contact searching algorithm for general 3-D contact-impact problems," Computers and Structures, Vol. 34, No. 2, pp. 327-335 (1990).
73. 王禮立,應力波基礎,國防工業出版社,北京 (1985)。
74. Johnson, K. L. 著,徐秉業、羅學富、劉信聲、宋國華、孫學偉譯,接觸力學,中國大陸高等教育出版社,北京 (1985)。
75. 杜慶華,余壽文,姚振漢,彈性理論,科學出版社(1986)。
76. 張汝清,詹先義,非線性有線元分析,重慶大學出版社,重慶 (1990)。
77. 何君毅,林祥都,工程結構非線性問題的數值方法,國防工業出版社,北京 (1994)。
78. 黃順昌,「含磚牆R.C.結構不連續變形分析」,碩士論文,國立成功大學土木研究所,臺南 (1994)。
79. 盛若磐,「不連續變形分析與有限元素的結合」,國立中央大學土木系,行政院國家科學委員會專題研究計劃成果報告NSC84-2211-E008-023。
80. 詹家潢,「土木結構系統動態接觸行為之流行分析方法」,碩士論文,國立中央大學土木工程研究所,中壢 (1996)。
81. 陳明志,「二維不連續變形分析與有限元素的結合」,碩士論文,國立中央大學土木工程研究所,中壢 (1996)。
82. 林聰悟,林佳慧,數值方法與程式,臺北 (1997)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 11. 邱進益,民國86年,"積極實踐心靈改革,建構民主效率政府",人事月刊,25卷,3期,頁18-23,九月。
2. 31. 潘浙楠,民國85年,"推行TQM常遇到的問題及其解決之道",品質管制月刊,頁34-37,七月。
3. 35. 魏啟林,民國87年,"顧客導向的政府",人事月刊,27卷,4期,頁20-22,十月。
4. 34. 鄭博文,民國86年,"落實品管圈活動以提升行政機關之服務品質",研考雙月刊,21卷,6期,頁26-44,十 二月。
5. 33. 鄭興弟,民國83年,"行政機關績效評估",研考雙月刊,18卷,5期,頁8-14,十月。
6. 32. 廖德福,民國87年,"TQM-政府改造與國家永續發展之道",品質管制月刊,頁61-68,九月。江大樹,民國 85年,"國家競爭力與政府再造",國家政策雙週刊,142期,頁13-14,七月。
7. 15. 陳金貴,民國87年,"結合效率與民主的人事政策:政府再造中人力再造計畫的探討",公務人員月刊,28期 ,頁3-21,十月。
8. 12. 孫本初,民國84年,"美國聯邦政府全面品質管理評審標準之概述",研考雙月刊,19卷,2期,頁45-56,四 月。
9. 30. 楊百島,民國87年,"推動政府再造的激勵培訓策略與作法",人事月刊,26卷,1期,頁40-49,一月。
10. 26. 楊錦洲,民國86年,"全面品質管理縱橫觀",管理雜誌,272期,頁76-78,二月。
11. 24. 黃臺生,民國83年,"行政革新:英國的經驗(下)",人事月刊,20卷,1期,一月。
12. 23. 黃臺生,民國83年,"行政革新:英國的經驗(上)",人事月刊,19卷,5期,十一月。
13. 21. 陳國齊,民國83年,"如何健全機關組織,精簡員額,以提升行政效率之研究(下)",人事月刊,18卷,2 期,頁48-52,二月。
14. 20. 陳國齊,民國83年,"如何健全機關組織,精簡員額,以提升行政效率之研究(上)",人事月刊,18卷,1 期,頁20-29,一月。
15. 19. 陳庚金,民國86年,"提升國家競爭力落實推動工作簡化",人事月刊,24卷,3期,頁4-9,三月。