(34.237.124.210) 您好!臺灣時間:2021/03/02 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳琪
研究生(外文):Chi Chen
論文名稱:微電子封裝中鎳與鉍錫銲料界面反應之研究
論文名稱(外文):Interfacial Reactions between Ni Substrate and Microelectronics BiSn Solder
指導教授:高振宏高振宏引用關係
指導教授(外文):C. R. Kao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:126
中文關鍵詞:微電子封裝鉍錫銲料鎳基材界面反應活化能
外文關鍵詞:microelectronics packagingBiSn solderNi substrateinterfacial reactionactivation energy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文進行兩組實驗,分別是Ni與液態58Bi42Sn (wt.%)之固/液反應及Ni與固態58Bi42Sn之固/固反應。其中58Bi42Sn為微電子用無鉛銲料的主要候選材料之一,而Ni則常用於印刷電路板及BGA之墊層。
在固/液反應中,我們分別在180、240、300、360及420℃五個溫度進行反應,反應時間為0.5∼48小時不等。在180oC反應中,Ni與BiSn合金的界面有一薄生成物層,其組成由EPMA分析得知為Ni3Sn4,此生成物之厚度隨反應時間增加而緩慢增加,反應48小時的厚度僅達14mm。在240oC∼360oC反應中界面生成物亦為Ni3Sn4,而其厚度亦隨時間增加而增加,但遠離界面的合金中亦有零散的Ni3Sn4形成。在420oC Ni3Sn4在界面快速生長,而Ni3Sn4在遠離界面合金中生成的數量也最多,這些遠離界面的Ni3Sn4應是在液態BiSn固化的過程中析出的。根據實驗結果得知Ni3Sn4的生長機制在360oC有了轉變,亦即180oC∼360oC反應中Ni3Sn4的生長由Ni在液態Sn中的擴散控制,活化能為23 kJ/mol;在420oC反應中,Ni3Sn4的生長則由反應控制,生長活化能為78 kJ/mol。
在固/固反應中,我們分別在85、100、120及135oC四個溫度進行實驗,時間為25∼3600小時不等。金相結果顯示界面有一生成物層產生,由XRD及EPMA分析得知此生成物層為Ni3Sn4,其組成為56.9±0.6 at.% Sn。Ni3Sn4的生長遵循擴散控制的模式,85 oC∼120oC生長活化能為90 kJ/mol,85 oC∼135oC生長活化能為177 kJ/mol。
Two sets of experiments were carried out in this work. The first is the reaction between solid Ni and liquid 58Bi42Sn (wt.%), and the second is the reaction between solid Ni and solid 58Bi42Sn. The alloy 58Bi42Sn is a strong Pb-free candidate for replacing the 37Pb63Sn solder, while Ni is used in many printed circuit board (PCB) and ball grid array (BGA) package surface finishes.
In solid/liquid reaction, experiments were carried out at 180, 240, 300, 360 and 420 oC for 0.5 to 48 hours. It was found that a reaction zone formed between Ni and BiSn alloy. Reaction at 180 oC produced a thin reaction layer of Ni3Sn4. The average thickness of the reaction layer increased slowly with reaction time, reaching 14mm after 48 hours. Reactions at 240 to 360oC produced thicker reaction layers with increasing reaction temperatures and time, and some Ni3Sn4 pieces were dispersed in the BiSn alloy. Reaction at 420oC produced a two-phased reaction zone composed of Ni3Sn4 and BiSn alloy, and the amount of Ni3Sn4 dispersed in BiSn alloy was largest. The growth mechanism changed at 360oC. The growth of Ni3Sn4 was diffusion controlled with an activation energy of 23 kJ/mol below 360oC, and it became reaction controlled with an activation energy of 78 kJ/mol at temperature above 360oC.
In solid/solid reaction, experiments were carried out at 85, 100, 120, and 135oC for 25∼3600 hours. It was found that Ni3Sn4 with layered structure formed between Ni and BiSn alloy. Analysis using electron microprobe showed that Ni3Sn4 has the composition of 56.9±0.6 at.% Sn. The growth of Ni3Sn4 layer was diffusion controlled with an activation energy of 177 kJ/mol.
中文摘要I
英文摘要II
目 錄III
圖 目 錄V
表 目 錄IX
符號說明X
第 一 章 緒論
1.1 研究背景1
1.1.1 微電子構裝1
1.1.2 銲接9
1.1.3 銲料13
1.1.4 含鉛銲料與無鉛銲料16
1.2 研究目的23
第 二 章 文獻回顧
2.1 Ni/Bi反應實驗文獻回顧24
2.2 Ni/Sn反應實驗文獻回顧32
2.3 Bi-Sn銲料文獻回顧37
2.4 實驗規劃42
第 三 章 實驗方法及步驟
3.1 鎳與液態鉍錫之反應44
3.2 鎳與固態鉍錫之反應50
第 四 章 實驗結果
4.1 鎳與液態鉍錫之反應57
4.1.1 顯微鏡金相觀察:介金屬形態57
4.1.2 顯微鏡金相觀察:介金屬生長動力學72
4.1.3 EPMA組成分析82
4.2鎳與固態鉍錫之反應84
4.2.1 掃描式電子顯微鏡金相觀察:介金屬形態84
4.2.2 掃描式電子顯微鏡金相觀察:介金屬生長動力學91
4.2.3 EPMA組成分析99
4.2.4 XRD實驗結果100
第 五 章 討論
5.1 鎳與液態鉍錫之反應反應102
5.1.1 介金屬生長厚度與生長動力學102
5.1.2 介金屬Ni3Sn4的形狀107
5.2 鎳與固態鉍錫之反應反應109
5.2.1 介金屬生長厚度與生長動力學109
5.2.2 介金屬Ni3Sn4的形狀及鉍錫合金微結構的變化109
第 六 章 結論113
參考文獻116
附 錄、Ni/NiBi/NiBi3/Bi擴散反應
a. 實驗目的120
b. 實驗方法與步驟120
1. Ni/NiBi3擴散反應121
2. Ni/NiBi/NiBi3加Bi之擴散反應123
c. 實驗結果與討論123
[ALL]Alloy Digest, Bi-33, Dec., 1983.
[AME]Soldering Manual, p.134, American Welding Society, Miami, FL, 1978.
[AVI]R. R. de Avillez, M. F. S. Lopes and A. L. M Silva, J. Mater. Sci. Eng A, 205, p.209, 1996.
[BAD]S. Bader, W. Gust and H. Hieber, Acta Metall. Mater, 43, p.329, 1995.
[BAK]H. Baker, ASM Handbook v.3: Alloy Phase Diagrams, ASM, Materials Park, OH, p.2.335, 1992.
[BRA1]E. Bradley and K. Banerji, IEEE Trans. Compon. Pack. Manufact. Tech. B, 19, p.320, 1996.
[BRA2]E. A. Brandes and G. B. Brook, Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann Ltd, Oxford, 1992.
[CHE]C. P. Chen and Y. A. Chang, Diffusion in Ordered Alloys, ed. B. Fultz, R. W. Cahn, and D. Gupta, TMS, Warrendale, PA, p.169, 1993.
[COR1]M. McCormack, I. Artaki, S. Jin, A. M. Jackson, D. M. Machusak, G. W. Kammlott and D. W. Finley, J. Elecrtron. Mater., 25, p.1128, 1996.
[COR2]M. McCormack, S. Jin and G. W. Kammlott, J. Appl. Phys. Lett., 64, p.580, 1994.
[DUC]O. V. Dunchenko and V. I. Dybkov, J. Mater. Sci. Lett., 14, p.1725, 1995.
[DYB]V. I. Dybkov and O. V. Dunchenko, J. Alloys and Compounds, 234, p.295, 1996.
[GHO]G. Ghosh, J. Electron. Mater., 27, p.1154, 1994.
[GLA1]J. Glazer, Int. Mater. Rev., 40, p.65, 1995.
[GLA2]J. Glazer, Electron. Mater., 23, p.693, 1994.
[GIC]A. Gickler, C. Willi and M. Loomans, Surf. Tech., Jan/Feb, p.28, 1998.
[GOL]J. L. F. Goldstein and J. W. Morris, Jr., J. Electron. Mater.,, 23, p.477, 1994.
[GRE]J. B. Greaves Jr., in Proc. Conf. Nepcon West, Anaheim, CA, 1993.
[GUP]Y. P. Gupta, The Properties of Liquid Metals, reprints from Adv. Phys., 16, 1967. Taylor &Francis, London.
[GUR]D. Gur and M. Bamberger, Acta Meter., 46, p.4917, 1998.
[HAI]J. Haimovich, Welding Res. Supplement, 68, p.102s, 1989.
[HAR]C. A. Harper, Electronic Packaging and Interconnection Handbook, McGraw-Hill, New York, 1991.
[HO]C. E. Ho, Y. M. Chen, and C. R. Kao, "Dissolution and reaction kinetics of the solder-ball pads in BGA during reflow soldering," submitted to Journal of Electronic Materials.
[KAN1]S. K. Kang and V. Ramachandran, Scripta Metall., 14, p.421,1980.
[KAN2]S. K. Kang, R. S. Rai and S. Purushothaman, J. Electron. Mater., 25, p.1113, 1996.
[KAO1]C. R. Kao, Mater. Sci. Eng. A, 238, p.196, 1997.
[KAO2]C. R. Kao, Ph. D Theses, University of Wisconsin-Madison, 1994.
[KAY]P. J. Kay and C. A. MacKay, Trans. Inst. Matel. Finishing, 51, p.85, 1973.
[KLO]J. Kloeser, E. Zakel, F. Bechtold and H. Reichl, , IEEE Trans. A, 19, p.24, 1996.
[KIM]H. K. Kim, H. K. Liou and K. N. Tu, J. Appl. Phys. Lett., 66, p.2337, 1995.
[LEE1]M. S. Lee, C. M. Liu and C. R. Kao, J. Electron. Mater., 28, p.57, 1999.
[LEE2]M. S. Lee, C. Chen and C. R. Kao, J. Chem. Mater., 11, p.292, 1999.
[LEE3]N. C. Lee, Soldering and Surface Mount Tech., 6, p.65, 1997.
[LOO]F. J. J. van Loo and G. D. Reick, Acta Metall., 21, p.61, 1973.
[MA]C. H. Ma and R. A. Swalin, Acta Meter., 8, p.388, 1960.
[MAN]H. H. Manko, Solder and Soldering, McGraw-Hill, p.1, 1992.
[MAS]T. B. Massalski et al. (eds.): Binary Alloy Phase Diagrams, 1-3, 2nd edn, 1990. Matirials Park, OH, ASM International.
[MEI1]Z. Mei, P. Gallery, D. Fisher, F. Huw and J. Glazer, Adv. Electron. Pack., 2, p.1543, 1997.
[MEI2]Z. Mei and H. Holder, Trans. ASME., 118, p.62, 1996.
[MEI3]Z. Mei, F. Hua and J. Glazer, Proceedings of a Symposium held during the TMS Annual Meeting at Orlando, Florida 10-13, 1997.
[MEL1]C. Melton and H. Fuerhaupter, Circuit World, 23, p.30, 1997.
[MEL2]C. Melton, JOM, 45, p.33, 1993.
[MFG1]Soldering Part2, in Circuits MFG, 1980.
[MFG2]Soldering, in Circuits MFG, p.17, 1980.
[NAS1]P. Nash, Bulletin of Alloy Phase Diagram, 6, p.345, 1985.
[NAS2]P. Nash, Bulletin of Alloy Phase Diagram, 6, p.350, 1985.
[NCM]Lead-Free Solder Project Final Report, NCMS Report 0401RE96, National Center for Manufacturing Sciences, 3025 Boardwalk, Ann Arbor, Michigan, 1997.
[RAE]C. H. Raeder, L. E. Felton, V. A. Tanzi and D. B. Knorr, J. Electron. Mater., 23, p.611, 1994.
[RAH]A. Rahn, The Basics of Soldering, John Wiely & Sons, 1993,New York.
[ROM]B. M. Romenesko, Int. J. Microcircuit Electron. Pack., 19, p.64, 1996.
[SEN]Senate Bills S.729 and S.2637 by Senator Reid; House Bills H.2479 and H.2922 by Representative Cardin.
[SHO]R. H. Short and G. P. Evans, Assem. Eng., 31, p.44, 1988.
[SUG]K. Suganuma, Scripta Mater., 38, p.1333, 1998.
[TWT]J. H. Lau, Ball Grid Array (BGA) and Chip Scale Package (CSP) Course, Technical Programs for the Ssemiconductor and Flat Panel Display Equipment and Materials Industries, SEMICON Taiwan, 1996.
[VIA1]P. T. Vianco, K. L. Erickson, and P. L. Hopkins, J. Electron. Mater., 23, p.721, 1994.
[VIA2]P. T. Vianco, P. F. Hlava, and A. C. Kilgo, J. Electron. Mater., 23, p.583, 1994.
[VIA3]P. T. Vianco, A. C. Kilgo and R. Grant, J. Electron. Mater., 24, p.1493, 1995.
[VIL]P. Villars and L.D. Calvert, Pearson''s Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, OH, 1991.
[WAR]M. E. Warwick and S. J. Muckett, Circuit World, 9, p.5, 1983.
[WAS1]R. J. Wassink, Soldering in Eelectronics, Electrochemical Pub. Ltd., p.99, 1984.
[WAS2]R. J. Wassink, Soldering in Eelectronics, 2nd ed., Electro-chemical Pub. Ltd., p.523, 1989.
[WIL]R. W. Wild, Technical Report 171200408, IBM Federal Systems Division Laboratory, Owego, NY, 1971.
[WOO]E. P. Wood and K. L. Nimmo, J. Electron. Mater., 23, p.709, 1994.
[李明勳]李明勳碩士論文,中央化工所,1998。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔