(3.237.97.64) 您好!臺灣時間:2021/03/03 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳典諺
研究生(外文):DianYan Wu
論文名稱:一九九六年九月五日蘭嶼地震震源破裂過程
論文名稱(外文):Rupture Process of the September 5, 1996 Lanyu Earthquake
指導教授:馬國鳳馬國鳳引用關係
指導教授(外文):KuoFong Ma
學位類別:碩士
校院名稱:國立中央大學
系所名稱:地球物理研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:103
中文關鍵詞:震源破裂過程蘭嶼地震震源特性有限斷層離散波數法泛化波線法
外文關鍵詞:Rupture ProcessLanyu EarthquakeThe characteristics of seismic sourceFinite FaultDiscrete Wavenumber methodGeneralized Ray theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用遠震寬頻P波、SH波的位移資料,區域強地動SH波位移資料以及聯合遠震與強震位移波形,藉由最小平方法的逆推方式來分析一九九六年九月五日蘭嶼地震(ML7.07)之震源破裂過程。本研究採用Kikuchi使用遠震長週期P波逆推所得之震源機制解,並依據餘震分布情形,決定此地震之破裂面為走向356.5。、傾角54.7。、滑移角70。,假設斷層面大小為沿走向長73公里,沿傾角寬35公里,斷層面共分成240個子斷層面,每個子斷層面長3.03公里、寬3.5公里。對於每個子斷層面的格林函數計算,是以位於其中心點位置的點震源來表示。在強地動方面,其格林函數是利用廣義反射-透射係數矩陣以及離散波數方法計算,之後再組合震源時間函數,便可得到每個子斷層所提供的合成波波形;在遠震方面,則是利用泛化波線法計算。由聯合波形逆推結果可知,此地震主要的破裂方向為單一方向向南破裂,斷層面上的錯動分布是不均勻的,可分為四個主要的錯動區,一為震源區附近,第二個在距離震源以南10公里處,第三個是在距震源以南15公里到35公里之間(約於地震發生後6~12秒),第四個則位於40公里左右。最大錯動約位於震源以南20公里,沿傾角深30公里處,其錯動量為370公分。此外,將三日內規模大於4.0以上的餘震投影到斷層面上,顯示餘震大部分皆發生在主要破裂的外圍,或是錯動梯度較大的地方,反映出在震源區主震發生後,應力有再分配的情形。若不考慮斷層邊緣格點的錯動分布,則斷層面上之平均錯動量為31.6公分,地震矩M0為1.8*1026 dyne-cm,利用M0換算出來的MW規模為6.8,圓形破裂模式所得應力降Δσ為5.34 bar,矩形破裂模式所得應力降Δσ為2.16 bar。
We present a rupture model of the 1996 Lanyu earthquake (ML =7.07), determined from the least-square inversion of local strong motion records, P and SH teleseismic body waves, and combined the strong motion and teleseismic records, respectively. We adopt the focal mechanism using complex body waveform inversion. Based on the aftershock distribution, we determined the rupture plane of the earthquake is strike 356.5。, dip 54.7。, and rake 70。. The fault has dimension of fault length of 73 km and the down-dip width of 35 km. The fault plane was discretized into a total of 240 subfaults, each has 3.03-km in length and 3.5-km in width. The subfault is representative by the response of a point source centered on the subault. The Green’s function on each subfault, for teleseismic P or SH body wave, is computed using the generalized ray method. The Green’s funciton for strong motions are computed for a layered velocity model with the discrete wavenumber method. We convolved the Green’s function with source time function to get synthetic seismogram produced by each subfault. From analysis of the combined waveform inversion results, we find a unilateral dislocation from north to south with four main asperities. First region is centered at the hypocenter, the second, third, and fourth is located at about 10 km, 15-35 km, and 40km southeast of the hypocenter, respectively. The aftershocks with M > 4.0 distribution were located outside the regions with large slip or with high slip gradients. This indicates that the redistribution of stress follows the primary failure on the fault plane. The average slip is about 31.6 cm and total seismic moment is about 1.8*1026 dyne-cm. The stress drops for circular and rectangular fault are 5.34 bar and 2.16 bar, respectively.
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 5
1.3 本文內容 8
第二章 研究方法 9
2.1 泛化波線理論 9
2.2 強地動格林函數計算方法 17
2.3 逆推方法 24
第三章 震源機制解、餘震分布與斷層幾何模型假設 27
3.1 震源機制解 27
3.2 餘震分布 30
3.3 斷層幾何模型假設 30
第四章 遠震資料分析結果 34
4.1 資料來源與處理 34
4.2 理論格林函數計算 37
4.3 逆推處理 45
4.4 逆推結果與討論 46
4.4.1 破裂速度測試 46
4.4.2 其它震源參數測試 50
4.4.3 與遠震P波及SH波個別逆推結果比較 52
4.4.4 錯動量分布之可信度分析 56
4.4.5 結果 59
第五章 強震資料分析結果 64
5.1 資料來源與處理 64
5.2 理論格林函數計算 68
5.3 逆推處理 71
5.4 逆推結果與討論 71
5.4.1 速度模型與破裂速度測試 71
5.4.2 其它參數測試 75
5.4.3 錯動量分布之可信度分析 80
5.4.4 結果 83
第六章 聯合遠震與強震逆推 85
6.1 聯合逆推之結果與討論 85
6.2 主震破裂與餘震之空間分布 87
6.3 遠震、強震及聯合遠震與強震逆推結果之討論 90
第七章 結論 95
參考文獻 97
英文摘要 103
Aki, K. (1979). Characterization of barriers on an earthquake fault, J. Geophys. Res. 84, 6140-6148.
Aki, K., and P. G., Richards (1980). Quantitative Seismology: Theory and Mehtods, W. H. Freeman and company, San Francisco, Calif.
Aki, K. (1984). Asperities, barriers, characteristic earthquakes and strong motion prediction, J. Geophys. Res. 89, 5867-5872.
Alekseev, A. S., and B. G., Mikhailenkl (1979). Numerical modeling of transient wave fields in seismology and seismic prospecting (vertically-inhomogenous halfspace and radially-inhomogeneous sphere), Siberian Branch-Academy of Sciences of the USSR Computing Center, Novosibirsk.
Alekseev, A. S., and B. G., Mikhailenkl (1980). The solution of dynamic problems of elastic wave propagation in inhomogeneous media by a combination of partial separation of variables and finite difference models, J. Geophys. 48, 161-172.
Beroza, G. C., and P., Spudich (1988). Linearized inversion for fault rupture behavior, Application to the 1984 Morgan Hill, California, earthquake, J. Geophys. Res. 93,6275-6296.
Bouchon, M. (1981). A simple method to calculate Green’s functions for elastic layered media, Bull. Seism. Soc. Am., 71, 959-971.
Cheng, W. B., C., Wang, C. T., Shyu, and T. C., Shin (1998). A three-dimensional Vp model of the southeastern Taiwan area and its tectonic implications, TAO, 9, 425-452.
Cohee B. P., and G. C., Beroza (1994). Slip distribution of the 1992 Landers earthquake and its implications for earthquake source mechanics, Bull. Seism. Soc. Am., 84,692-712.
de-Hoop, A. T. (1960). A modification of Cagniard’s method for pulse solving seismic pulse problem, Appl. Sci. Res. B8, 349-356.
Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Roy. Soc. London Serise A 241,376-396.
Fukuyama, E., and K. Irikura (1986). Rupture process of the 1983 Japan Sea (Akita-Oki) earthquake using a waveform inversion method, Bull. Seism. Soc. Am., 76, 1623-1640.
Gilbert, F., and D. V., Helmberger (1972). Generalized ray theory for a layered sphere, geophys. J. R. astr. Soc., 27, 57-80.
Harkrider, D. G. (1976). Potentials and displacements for two theoretical seismic sources, Geophys. J. 47, 97-133.
Hartzell, S. H., and T. H., Heaton (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bull. Seism. Soc. Am., 73, 1553-1583.
Hartzell, S. H., and T. H., Heaton (1986). Rupture history of the 1984 Morgan Hill, California, earthquake from the inversion of strong motion records, Bull. Seism. Soc. Am., 76, 649-674.
Hartzell, S. H. (1989). Comparison of Seismic waveform inversion results for the rupture history of a finite fault: application to the 1986 North Palm Springs, California, earthquake, J. Geophys. Res. 94, 7515-7534.
Haskell, N. A. (1964). Radiation pattern of surface waves from point sources in a multilayered medium, Bull. Seism. Soc. Am., 54, 377-393.
Helmberger, D. V. (1968). The crust-mantle transition in the Bering Sea, Bull. Seism. Soc. Am., 58,179-214.
Helmberger, D. V. (1974). Generalized ray theory for shear dislocations, Bull. Seism. Soc. Am., 64, 45-64.
Helmberger, D. V., and S. D., Malone (1975). Modeling local earthquakes as shear dislocation in a layered halfspace, J. Geophys. Res. 80, 4881-4888.
Helmberger, D. V., and Harkrider, D. G., (1978). Modeling earthquakes with generalized ray theory, Processing of IUTAM Sympoisum: Modern problems in elastic wave propagation, J. Miklowitz and J. Achenbach, editors, John Wiley and Sons, New York, 499-518.
Herrmann, R. B. (1978). A note on causality problems in the numerical solution of elastic wave propagation in cylindrical coordinate systems, Bull. Seism. Soc. Am., 68, 117-124.
Herrmann, R. B. (1979). SH-wave generation by dislocation source-A numerical study, Bull. Seism. Soc. Am., 69, 1-15.
Kanamori, H. (1977). The energy release in great earthquakes, J. Geophys. Res. 82, 2981-2987.
Kanamori, H. (1981). The nature of seismicity pattern before large earthquakes, Earthquake Prediction, an International Review, Maurice Ewing Series, 4, 1-19.
Kennett, L. N. (1975). The effects of attenuation on seismograms, Bull. Seism. Soc. Am., 65, 1643-1651.
Kennett, L. N., and N. J., Kerry (1979). Seismic waves in a stratified half space, Geophys. J. R. astr. Soc., 57, 557-583.
Kikuchi, M., and H., Kanamori (1982). Inversion of complex body waves-I, Bull. Seism. Soc. Am., 72, 491-506.
Kikuchi, M., and H., Kanamori (1986). Inversion of complex body waves- II, Phys. Earth. Planet. Inter., 43, 205-222.
Kikuchi, M., and Kanamori, H. (1991). Inversion of complex body waves-III, Bull. Seism. Soc. Am., 81, 2335-2350.
Knopoff, L. (1958). Energy release in earthquakes, Geophys. J. 1, 44-52.
Langston, C. L, and D. V., Helmberger (1975). Aprocedure for modeling shallow dislocation sources, Geophys. J. 42, 117-130.
Lawson, C. L., and R. J., Hanson (1974). Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, New Jersey.
Liu, K. S., T. C., Shin, and Y. B., Tsai, (1998). A free field strong motion network in Taiwan: TSMN, submitted to TAO.
Ma, K. F., and J. Mori (1998). Rupture process of the June 25, I-Lan earthquake, Symposium on Taiwan Strong Motion Instrumentation Program (III), 141-143.
Mendoaz, C., and S. H., Hartzell (1988). Aftershock patterns and mainshock faulting, Bull. Seism. Soc. Am., 78, 1438-1449.
Mori, J., and S., Hartzell (1990). Source inversion of the 1988 Upland, California, earthquake: determination of a fault plane for a small event, Bull. Seism. Soc. Am., 80, 507-518.
Olson, A. H., and R. J., Aspel (1982). Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake, Bull. Seism. Soc. Am., 72, 1969-2001.
O’Neil, M. E., and D. P., Hill (1979). Causal absorption: its effect on synthetic seismograms computed by the reflectivity method, Bull. Seism. Soc. Am., 69, 17-25.
Takeo, M. (1987). An inversion method to analyze the rupture processes of earthquakes using near-field seismograms, Bull. Seism. Soc. Am., 77, 490-513.
Takeo, M., S. Ide, and Y., Yoshida (1993). The 1993 Kushiro-oki. Japan, earthquake: a high stress drop event in a subducting slab, Geophys. Res. Lett. 20, 2607-2610.
Takeo, M., S. Ide, and Y., Yoshida (1996). Source process of the 1995 Kobe earthquake: determination of spatio-temporal slip distributin by Bayesian modeling, Bull. Seism. Soc. Am., 86, 547-566.
Wald, D. J., D. V., Helmberger, and T. H., Heaton (1991). Rupture model of the 1989 Loma Prieta earthquake from the inversion of strong motion and broadband teleseismic data, Bull. Seism. Soc. Am., 81, 1540-1572.
Wald, D. J., and T. H., Heaton (1994). Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake, Bull. Seism. Soc. Am., 84, 668-691.
Wald, D. J., T. H., Heaton, and K. W., Hudnut (1996). The slip history of the 1994 Northridge, California, earthquake deterniner from strong-motion, teleseismic, GPS, and leveling data, Bull. Seism. Soc. Am., 86, 49-70.
Wang, C. Y., and R. B., Hermann (1980). A numerical study of P-, SV- and SH-wave generation in a plane layered medium , Bull. Seism. Soc. Am., 70, 1015-1036.
Yao, Z. X., and D. G., Harkrider (1983). A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms, Bull. Seism. Soc. Am., 73, 1685-1699.
中央氣象局, 1996. 地震季報, 43, 第59頁.
周念平, 1990. 一九七八年七月二十三日蘭嶼地震震源破裂過程之逆推, 國立中央大學地球物理研究所碩士論文.
洪明志, 1998. 利用強震網資料探討1996年7月6日屏東地震之震源特性, 國立中央大學地球物理研究所碩士論文.
陳燕玲, 1995. 台灣地區三維速度構造與隱沒構造之相關討論, 國立中央大學地球物理研究所碩士論文.
黃文紀, 1999. 嘉南地區地震震源特性之研究, 國立中央大學地球物理研究所博士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔