|
{1} L. Belloni, J. Chem. Phys. 85, 519 (1986). {2} S. Khan, T.L. Morton and D. Ronis, Phys. Rev. A 35, 4295 (1987). {3} E.J. Verwey and J.G. Overbeek, { Theory of the Stability of Lyophobic Colloids} (Elsevier, Amsterdam, 1948) . {4} S.K. Lai and G.F. Wang, Phys. Rev. E 58, 3072 (1998). {5} S.K. Lai, J.L. Wang and G.F. Wang, J. Chem. Phys., in press (1999). {6} G.F. Wang and S.K. Lai, Phys. Rev. Lett., May issue (1999). {7} J.H. Schenkel and J.A. Kitchener, Trans. Faraday Soc. 56, 161 (1960). {8} J.A. Long, D.W.J. Osmond and B. Vincent, J. Colloid Interface Sci. 42, 545 (1973). {9} A. Kotera, K. Furusawa and K. Kubo, Kolloid Z. Z. Polym. 240, 837 (1970). {10} K. Gotoh, R. Kohsaka, K. Abe and M. Tagawa, J. Adhesion Sci.Technol. 10, 1359 (1996). {11} M.J. Grimson, J. Chem. Soc. Faraday Trans. 2 79, 817 (1983). {12} J.M. Victor and J.P. Hansen, J. Physique Lett. 45, L307(1984); J. Chem. Soc. Faraday Trans. 2 81, 43 (1985). {13} J. Kaldasch, J. Laven and H.N. Stein, Langmuir 12, 6197 (1996). {14} Here we are concerned with the second minimum of V(r) whose interaction strength comes solely from the London- van der Waals attraction. The physical origin and the range of the latter attraction are somewhat different from many other mechanisms (see Lowen [Physica A, 235, 129 (1997)] for a general description) giving rise to different range of attractive forces. Since the mechanism leading to the attraction varies with the physical system and is still not fully understood or may be even controversial, we confine our calculations to only the van der Waals kind of attraction. Note that, depending on the colloidal conditions, the range of the London-van der Waals attraction for charged colloids may be short-ranged but it is of a somewhat different nature from those extremely short-ranged attractions that are shown theoretically [J.M. Kincaid, G. Stell and E. Goldmark, J. Chem. Phys. 65, 2172 (1976); C.F. Tejero et al., Phys. Rev. Lett. 73, 752 (1994)] and in computer simulation studies [B. Alder and D. Young, J. Chem. Phys. 70, 473 (1979); P. Bolhuis and D. Frenkel, Phys. Rev. Lett. 72, 2211 (1994)] to lead to a different type of phase transition---the isostructual solid-solid transition. {15} J.D. Weeks, D. Chandler and H.C. Andersen, J. Chem. Phys. 54, 5237 (1971). {16} A. Adelman, Chem. Phys. Lett. 38, 567 (1976); J. Chem. Phys. 64, 724 (1976). {17} D.A. McQuarrie, Statistical Mechanics (}Harper and Row, New York, 1976), pp. 266. {18} L. Verlet and J.J. Weis, Mol. Phys. 24, 1013 (1972). {19} J.P. Hansen, L. Reatto, M. Tau and J.M. Victor, Mol. Phys. 56, 385 (1985). {20} A. Watillon and A.M. Joseph-Petit, Disc. Faraday Soc. 42, 143 (1966). {21} J. Th. G. Overbeek, Colloid Science, edited by H.R. Kruyt, (Elsevier, Amsterdam, 1948) {22} Contrary to the remark made by Victor and Hansen {12}, we find the stipulation of the potential barrier V(x$_ {\text{M}}$) sensitive to the results predicted. For example, by choosing V(x$_{\text{M}}$)$% \lesssim $10k$_ {\text{B}}$T, we will obtain a $\sigma _{0}^{\text{min}}$ (see the discussion below) lower by about 500 $\stackrel {\rm o}{\rm A}$.( In order to clearify the difference between V(x$_{\text{M}}$)=15 k$_{%\text{B}}$T and V(x$_ {\text{M}}$)=10 k$_{\text{B}}$T. Interesting reader may consult Appendix A and Appendix B.) {23} B. Vincent, J. Colloid Interface Sci. 42, 270 (1973). {24} R.H. Ottewill and J.N. Shaw, Discs. Faraday Soc. 42, 154 (1966). {25} This x$_{\text{m}}$ is compatible with the experimental data of Watillon and Joseph-Petit \cite{WJP}. Employing their measured data ($%\sigma _{0}$=1760$\stackrel{\rm o} {\rm A},$ A=0.5$\times 10^{-20}$ J,18 mV $% <\Psi <30$ mV and 150 $<\kappa <$ 303) for the aqueous polystyrene latices, we have checked that the average x$_{\text{m}}$ for different concentrations of NaClO$_{4}$ is located approximately at x$_{\text{m}}\approx 1.024$ which is reasonably close to the value expected for the $\sigma _ {0}$ range. ( For details, interesting reader may see Appendix H.) \text{B}}$T. [26] We base our argument on setting V(x$_{\text{M}}$)=15 k$_{% T. One should bear in mind an order of approximately 500 $\stackrel%{\rm o}{\rm A}$ for a change in setting of (x$_{\text{M}}$) by about 5k$_{%\text{B}}$T (see the comment in {22}).
|