|
Aroian, L. A. and Robison, D. F. (1966). Sequential life test for the exponential distribution with changing parameters, Technometrics 8 217-227. Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Breuk, H. D. (1972). Statistical Inference under Order Restrictions, Wiley, New York. Barlow, R. E. and Scheuer, E. M. (1971). Estimation from accelerated life tests. Technometrics. 13 145-149. Bechhofer, R. E. (1954). A single-sample multiple decision procedure for ranking means of normal populations with known variances. Ann. Math. Statist. 25 16-39. Blackwell, L. M. and Singpurwalla, N. D. (1986). Inference from accelerated life tests using filtering in coloured noise. J. R. Statist. Soc. B 50 281-292 Boardman, T. J. and Kendell, P. J. (1970). Tables of exact and approximate expected values of certain ratios and reciprocals of multinomial random variables useful in life testing, Technometrics 12 901-908. Chang, D. S., Huang, D. Y. and Tseng, S. T. (1992). Selecting the most reliable design under type-II censored accelerated testing, IEEE Transactions on reliability 41 588-592. Chen, L. , Lynn, N. J. and Singpurwalla, N. D. (1995). Markov mesh models for filtering and forecasting with leading indicators. IMS Lecture Notes-Monograph Series. Edited by Koul, H. L. and Deshpande, J. V. Chernoff, H. (1972). Optimal accelerated life designs for estimation, Technometrics 4 381-408. Cohen, A. C. (1965). Estimation of mixtures of Poisson and mixtures of exponential distribution, NASA Technical Memorandum NASA TMX 53245. Colvert, R. E. and Boardman, T. J. (1976). Estimation in the piece-wise constant hazard rate model, Commum. Statist. Meth., A5(11) 1013-1029. Cox, D. R. (1972). Regression models and life tables (with discussion), J. Roy. Stat. Soc. B, 34 187. Dale, C. J. (1985). Application of the proportional hazards model in the reliability field, Reliability Engineering, vol 10 1-14. DeGroot, M. H. and Goel, P. K. (1979). Nav. Res. Logist. Q., 26 223. Desu, M. M. , Narula, S. C. and Villarreal, B. (1977). A two-stage procedure for selecting the best of k exponential distributions. Commun. In. Statist. , Ser. A6 1223-1230. Elsayed, E. A., and Chan, C. K. (1990). Estimation of Thin-Oxide reliability useing proportional hazards models, IEEE Trans. on Reliability 39(3) 329-335. Friedman, M. (1981). Piecewise exponential models for survival data with covariates, Rutgers Univ. Tech. Report. Gamerman, D. (1991). Dynamic Bayesian models for survival data. Appl. Statist. 63-79. Gamerman, D. and West, W. (1987). A time series application of dynamic survival models in unemployment studies. Statistician. 269-274. Haberman, S. H. (1973). Log-linear models for frequency data: sufficient statistics and likelihood equations, Ann. Statist. 1 617-632. Haberman, S. H. (1977). Maximum likelihood estimates in exponential responses models, Ann. Statist. 5 815-841. Harald S. (1987). Decomposition of Weibull mixture-distributions in accelerated life testing by Bayesian method, Probability and Bayesian Statistics, edit by R. Viertl. Harris, C. M. and N. D. Singpurwalla. (1968). Life distributions derived from stochastic hazard rates, IEEE Trans. on Reliability Vol. R-17, No 2 70-79. Harrison, P. J. and Stevens, C. F. (1976). Bayesian forecasting(with discussion). J. R. Statist. Sco. B. 38 205-247. Holford, T. R. (1976). Life tables with concomitant information, Biometrics. 32 587-597. Holford, T. R. (1980). The analysis of rates and survivorship using log-linear models, Biometrics 36 299-305. Jeffers, N. L. (1973). Quality information system analysis, Ph. D. Dissertation, Colorado State University, Fort Collins, Colorado 149-152. Johnson, N. L. (1960). An approximation to the multinomial distribution: some properties and Applications, Biometrika 47 93-102. Kalbfeisch, J. D. (1978). Nonparametric Bayesian anaysis of survival time data, J. R. Statist. Sco. B. 40 214-223. Kao, J. H. K. (1959). A graphical estimation of mixed Weibull paramaters in life-testing of electron tubes, Technometrics Vol. 1, No. 4 389-407. Lam, K. (1988). An improved two-stage selection procedure. Commun. In. Statist. Simulation and Computation. B17(3) 55-62. Lam, K. and Ng, C. K. (1990). Two-stage procedures for comparing several exponential populations with a control when the scale parameters are unknow and unequal. Sequential Analusis. 9(2) 151-164. Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data, Wiley, New York. Lin, Z. and Fei, H. (1991). A nonparametric approach to progressive stress accelerated life testing. IEEE Transactions on reliablity. 40 173-176. Mann, N. R., Schafer, R. E., and Singpurwalla, N. D. (1974). Methods for statistical analysis of reliability and life data, Wiley, New York. Martz, H. F. and Waller, R. A. (1982). Bayesian Reliability Analysis, Wiley, New York. Mazzuchi, T. A. and Singpurwalla, N. D. (1988). Inferences from accelerated life tests some recent results. Accelerated life testing and experts'' opinions in reliability. Edited by Clarotti, C. A. and Lindly, D. V. Meeker, W. Q. (1984). A comparison of accelerated life test plans for Weibull and Lognormal distributions and type-I censoring. Technometrics. 26 157- 171. Meeker, W. Q. (1986). Planning life tests in which units are inspected for failure, IEEE Trans. on Reliability R-35 571-578. Meeker, W. Q. and Escobar, L. A. (1993). A review of recent research and current issues in accelerated testing. International Statistical Review. 61 147-168. Meinhold, R. E. and Singpurwalla, N. D. (1987). A Kalman filter smoothing approach for extrapolations in certain dose response damage assessment, and accelerated-life testing studies. Amer. Statistn. 41 101-106 Menzefricke, U. (1988). On sample size determination for accelerated life tests under a Normal model with Type II censoring, at Faculty of Mgt., Umiv. of Toronto, 246 Bloor St. West, Toronto, Ont. M5S 1V4. Miller, R. and Nelson, W. (1983). Optimum simple step-stress plans for accelerated life testing, IEEE Transactions on reliability 32 59-65. Mukhopadhyay, N. (1979). Some comments on two-stage selection procedures. Commun. In. Statist. , Ser. A8 671-683. Mukhopadhyay, N. (1983). Theoretical investigations of some sequential and two-stage procedures to select the larger mean. Sankhya. , Ser. A45 Part 3. Mukhopadhyay, N. (1984). Sequential and two-stage procedures for selecting the better exponential population covering the case of scale parameters being unknown and unequal. J. Statist. Plann. and Inference. 9 33-44. Mukhopadhyay, N. and Hamdy, H. I. (1984). Two-stage procedures for selecting the best exponential population when the scale parameters are unknown and unequal. Sequential Analysis. 3(1) 51-74. Mukhopadhyay, N. and Solanky, T. K. S. (1992). Accelerated sequential procedure for selecting the best exponential populations, J. Statist. Plan. Infer. 32 347-361. Nelson, W. B. (1972). Statistical methods for accelerated life test data-The inverse power law model, General Electric Co. Corp. Research Development TIS Report 71-C-001. Nelson, W. (1990). Accelerated Testing-Statistical Models, Test Plans, and Data Analyses. New York: John Wiley. Nelson, W. and Kielpinski, T. J. (1976). Theory for optimum censored accelerated tests for Normal and Lognormal life distributions, Technometrics 18 105-114. Nelson, W. and Meeker, W. Q. (1978). Theory for optimum censored accelerated life tests for Weibull and Extreme value distributions Technometrics 20 171-177. Proschan, F., and Sigpurwalla, N. D. (1979). Accelerating life testing-A pragmatic Bayesian approach, in Optimization in statistics, J. S. Rustagi, ed., Academic Press, New York. Proschan, F. and Singpurwalla, N. D. (1980). A new approach to inference from accelerated life tests. IEEE Transactions on reliablity. 29 98-102. Shaked, M. and Singpurwalla, N. D. (1983). Inference for step-stress accelerated life tests. J. of Statistical Planning and Inference. 7 295-306. Shaked, M. , Zimmer, W. J. and Ball, C. A. (1979). A nonparametric approach to accelerated life testing. J. Amer. Statist. Assoc. 74 694-699. Steck, G. P. , Zimmer, W. J. and Williams, R. E. (1974). Estimation of parameters in accelerated models. Proceeding 1974 Annual Reliability and Maintainability Symposium, IEEE, Piscataway, N. J. 428-431. Tseng, S. T. (1988). Selecting more reliable Wiebull populations than a control, Commun. Statist. -Theory Meth, 17(1) 169-181. Tseng, S. T. (1994). Planning accelerated life tests for selecting the most reliable product, J. Statist. Plan. Infer. 41 215-230. Tseng, S. T. and Chang, D. S. (1989). Selecting the more reliable design under type-II censoring, Reliability engineering and system safety 25 147-156. Tseng, S. T., Huang, D. Y. and Wu, T. Y. (1994). A sampling plan for selecting the most reliable product under Arrehenius accelerated life test model, Statistica Sinica 4 233-247. Tseng, S. T. and Wu, H. J. (1990). Selecting, under type-II censoring, Weibull populations that are more reliable, IEEE Transactions on reliability 39 193-198. Tobias, P. A. and Trindade, D. (1986). Applied Reliability, Van Nostrand Reinhold Co., New York. Viertl, R. (1988). Statistical Method in Accelerated Life Testing. Vandenhoeck Ruprecht, Gottinggen. West, M. and Harrison, J. (1989). Bayesian Forecasting and Dynamic Models, Springer-Verlag New York. West, M. , Harrison, D. J. and Migon, H. S. (1985). Dynamic generlized linear models and Bayesian forecasting. J. Amer. Statist. Assoc. 80 73-83.
|